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Abstract—Gray-box neural models mix differential equations, 

which act as white boxes, and neural networks, used as black 

boxes, to complete the phenomenological model. These models 

have been used in different researches proving their efficacy. 

The aim of this work is to show the training of the gray-box 

model through indirect backpropagation and Levenberg-

Marquardt. The gray-box neural model was tested in the 

simulation of a chemical process in a continuous stirred tank 

reactor (CSTR) with 5% noise, responding successfully. 
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I. INTRODUCTION 

Industrial processes are highly relevant to a country, 
particularly for its economy, and that is why there is a need 
to monitor and optimize those processes. However, when 
dealing with complex processes such as those in which a 
large number of input and output variables which are also 
represented by nonlinear models and with parameters that 
vary in time, important hindrances arise. 

When the processes to be modeled are complex, the 
determination of relevant variables or parameters for their 
improvement is a hard and difficult job. So there is a need to 
estimate the variables that cannot be measured directly. This 
requires a software sensor that allows observation of the 
variables that cannot be measured online making use of other 
easy to measure variables of the process [1]. 

An additional problem is that of a model that has 
parameters that vary in time, since a strategy must be 
adopted to identify those parameters online and in real time. 
A methodology that is used in these cases, especially in the 
field of chemical and biotechnological processes, is that of 
the so-called gray-box models [2], which are those that 
include a limited phenomenological model that is 
complemented with parameters obtained by means of neural 
networks. 

Chemical processes include a large number of variables, 
many of which can be measured directly online, while others 
cannot be measured online [3], many times because there are 
no instruments capable of making the measurement, other 
times because of their high cost, or because the 
measurements could take several days, while the aim is to 
get immediate information. 

Learning or training strategies used so far assume the 
existence of data for the parameters obtained by the neural 
model [1], but most of the time this is not possible.Training 
used in this work does not need data for the neural part, 
therefore working only with the data seen by the 
phenomenological part of the model, as detailed below. The 
creation of the proposed model, the learning, and the 
simulations were made completely in a Matlab environment, 
using as a basis in the work done in [4]. The contribution of 
the present work is to incorporate the initial pseudo-random 
assignment of weights, simulate the process by adding 5% of 
white or Gaussian noise to the data, the OSA and MPO 
simulation schemes, and finally incorporating quality 
measurement indices, all this compared to [4]. 

II. GRAY-BOX MODELS 

Gray-box neural models are used for systems where there 
is some a priori knowledge, i.e., some physical laws are 
known, however some parameters must be determined from 
observed data. 

Gray-box models, initially called hybrid neural networks 
or hybrid neural models, have been studied for more than a 
decade. The basics for a first hybrid neural network for 
modeling processes are developed in [5], where a 
comparison is made of standard neural networks and hybrid 
neural networks, the latter showing better performance for 
predicting parameters because they have a priori knowledge 
and they make use of it. They also showed that hybrid 
models can be identified and trained with a much smaller 
amount of data with respect to an equivalent black box 
model (neural networks). 

Two years later, [6] classified hybrid models in two 
categories. The first is the series gray-box model (Fig. 1), 
which consists of a neural network that supports intermediate 
values which are then introduced in the phenomenological 
model. The second category is the parallel gray-box model 
(Fig. 2), which consists of a neural network that compensates 
the phenomenological model in the sense of modeling the 
error. 

Then in [7] it was shown that in general the series gray-
box hybrid scheme achieves better results compared to the 
parallel scheme, with better performance of series models for 
MISO (multiple input single output) systems. However, in 
models of SISO (single input single output) systems the 
results obtained have similar characteristics. 



 
Figure 1.  Series gray-box neural model. A neural network that supports 

intermediate values that are then introduced in the phenomenological 

model. 

 

 
Figure 2.  Parallel gray-box neural model. A neural network that 

compensates the phenomenological model in the sense of modeling the 

error. 

In [8] two forms of training are distinguished. The first 
form corresponds to direct training (Fig. 3), which uses the 
error originated at the output of the neural network for the 
correct determination of their weights. The second form is 
indirect training (Fig. 4), which uses the error originated at 
the model's output for learning purposes of the neural 
network. Indirect training can be made in two forms, one by 
minimizing an objective function of state variables by means 
of a nonlinear optimization technique, and the other by 
backpropagating the output error in the weights of the neural 
network through the equations of the phenomenological 
model. 
 

 

Figure 3.  Direct training gray-box model. It uses the error originated at 

the neural network output for the correct determination of its weight. 

In [9] an application based on Matlab is used for 
developing gray-box neural models using a direct training 
strategy. This work has the purpose of carrying out a Matlab 
implementation of a training algorithm based on Levenberg-
Marquardt with indirect strategy, backpropagating the error 
of the model through the phenomenological model to the 
neural network. 
 

 
Figure 4.  Gray-box model with indirect training. It uses the error 

originated at the model's output for the neural network learning 

III. CSTR PROCESS  

 
The process corresponds to the simulation of the first 

order exothermic reaction in a Continuous Stirred Tank 
Reactor (CSTR) [10]. The system's input corresponds to the 
temperature of the cooling sleeve and the system's output 
corresponds to the degree of progress of the reaction. The 
state equations that describe the system are given below, 
equations (1), (2) and (3). 
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where: 
 

1
x
 : Degree of progress of the reaction. 

2
x
 : Nondimensional temperature of the reactor's 

content. 
µ
 : Input that corresponds to a nondimensional flow 

rate of the heat transfer fluid through the cooling sleeve. 
 



To carry out the simulation the following values were 
used for the model's constants: 
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The gray-box neural models consist of two parts, the first 

composed of a phenomenological model represented by 
differential equations and the second composed of an 
empirical model represented by a neural network. The gray-
box phenomenological model is represented by equations 

(4), (5) and (6), where 
ρ
 corresponds to the parameter that 

is hard to model, which will be estimated by the neural 
network. 

( )1 1 1' 0,072 1x x x ρ= − + ⋅ − ⋅  (4) 

( )2 2 1

2

' 8 0,072 1

0,3 ( )

x x x

x

ρ
µ

= − + ⋅ ⋅ − ⋅ +
⋅ −

 (5) 

1y x=  (6) 

 
However, for experimental and data generation purposes, 

the expression shown in equation (7) will be used. 
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Therefore, the parameter is assumed to be completely 
unknown and will be estimated using the indirectly trained 
neural network. Then, integrating equations (4) and (5) in the 
time interval between t and t+1, the discrete equations (8) 
and (9) are obtained. 
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Developing equations (8) and (9) for the construction of 
the gray-box neural model, the phenomenological part is 
represented by equations (10), (11) and (12). 
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IV. PROPOSED SOLUTION  

The proposed solution is a gray-box neural model whose 
phenomenological part can be described together with its 
empirical part, for which a neural network that contains both 
parts of the gray-box model is designed (Fig. 5). This hybrid 
neural network has the ability of setting weights in the 
training stage, so that it can act as a gray-box model. The 
weights in Fig. 5 that have a given value correspond to the 
model's phenomenological part, and in that way the weights 
will not be modified during the training. The weights for 
which no values are given correspond to the neural part of 
the model, and it is also seen that they present bias 
connections. These weights were initiallly assigned with 
pseudorandom values obtained by the initialization method 
of Nguyen-Widrow [11]. 

In Fig. 5 it is clearly seen that the neural part of the 
model is estimated by a multilayer perceptron that is inserted 
in the gray-box neural model, which has a 1-4-1 architecture. 
Its input corresponds only to X2 because, as seen in the 
mathematical model, the parameter that is hard to obtain 
depends only on this state variable. 

 

 
Figure 5.  Gray-box neural model for the simulation of the CSTR process 

with fixed weights. 



Consequently, the multilayer perceptron estimates the 
value of the hard to obtain parameter, which in turn is mixed 
with the phenomenological part of the model, which in that 
way get its output. 

For the neural part of the model hyperbolic tangent was 
used as transfer function in the intermediate layer and the 
identity function was used for the output layer, while for the 
phenomenological part the identity function was used as 
transfer function. The activation function used was the 
summation of the weighted inputs, except for the neuron 
immediately after the output of the neural part, where a 
product was used, due to the form of the phenomenological 
equations. 

For the validation of the proposed gray-box neural model 
quality indices such as the IA (index of agreement), RMS 
(root mean square) and RSD (residual standard deviation) 
were calculated; the values considered acceptable for these 
indices are IA > 0.9, RMS < 0.1 and RSD < 0.1. The quality 
indices are described in equation (13),  
where oi and pi are the observed and predicted values, 
respectively, in time i, and N is the total number of data. 
Therefore, pi’=pi-om and oi’=oi-om, where om is the mean 
value of the observations. 

V. TRAINING 

In the network the root mean squared is used as a 
performance function, and it is calculated at the output of the 
phenomenological model, from where it is backpropagated 
toward the weights of the network that are modifiable. In the 
training phase the input used is a noisy signal (Fig. 6), while 
in the simulation stage the input used is a sinusoidal signal 
(Fig. 7). 
 

 
Figure 6.  Input used in the gray-box neural model for the training stage. 

The training algorithm corresponds to the Levenberg-
Marquardt backpropagation method, which is a second order 
algorithm that presents a slight modification of the traditional 
Newton method. The algorithm also has the ability to modify 
only the weights that are indicated, leaving a group of fixed 
weights in the training phase which, as already mentioned, 
represent the model's phenomenological part. 

 
Figure 7.  Input used in the gray-box neural model for the simulation 

stage. 

This training scheme corresponds to the second indirect 
training method proposed by [8], in which the error at the 
output of the gray-box model is calculated and from there it 
is backpropagated to the empirical or neural part of the 
model. This has the advantage that it is not necessary to have 
measurements of the hard-to-obtain parameter. 

The hybrid neural network or the gray-box model were 
trained for 1000 epochs, several times, getting around 500 
different trainings, and then the best one of them was 
selected, using as a selection criterion the mean squared error 
obtained at the model's output. Then, in the simulation phase, 
the IA, RMS and RSD error indices are calculated. It is 
important to note that the number of training epochs can 
increase in this type of model, because having fixed weights 
is a restriction that is added to the optimization algorithm. 
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VI. SIMULATION AND RESULTS 

For the simulation, tests were made for data with 5% 
error. The simulation was made for the 200 available data. 

The t∆ value used for the simulation was 0.005, while the 
initial values for the state variables were X1 = 0.1 and X2 = 
0.8. The simulation was made in an MPO (multiple 
predictive output) scheme, i.e., from the initial state vector 
all the values are backfed to the input. 

Fig. 8 shows the response of the network to the OSA 
(one step ahead) simulation. The solid line shows the 
system's real output and the dashed line shows the output 
estimated by the model. Both outputs agree, so the model 
responds satisfactorily. 



 
Figure 8.  Response of the trained model with fixed weights, and 

simulated with 5% of OSA noise. 

Fig. 9 shows the MPO simulation. The solid line shows 
the sytem's real output and the dashed line shows the 
simulated output. In this case the estimated output does not 
present noise, acting as a filter. This happens because the 
MPO simulations consider only the initial vector and the 
model is iterated from it to perform all the simulations. 

 

 
Figure 9.  Response of the trained model with fixed weights, and 

simulated with 5% MPO noise. 

To validate the estimated output with respect to the 
system's real output with noise, the quality indices were 
used, which are shown in Table 1. All the resultant quality 
indices of these simulations are within acceptable ranges, so 
the gray-box neural model fits adequately the desired output 
for the case of 5% noise in the data. 

VII. CONCLUSIONS 

Gray-box neural models are a real alternative for 
modeling real world processes. They have advantages over 
black box models, because they are supported by the a priori 
knowledge available on the process. 

TABLE I.  QUALITY INDICES OF THE ESTIMATED OUTPUT, FOR OSA 

AND MPO, SIMULATED WITH 5% NOISE. 

 OSA MPO 

IA 0.9975 0.9948 

RMS 0.0080 0.0118 

RSD 0.0012 0.0017 

 
The model proposed in this paper combines the 

phenomenological knowledge of the process with a neural 
network of the multilayer perceptron type for the estimation 
of the parameter within a higher order neural network to 
carry out the backpropagation process. 

The indirect training method with backpropagation and 
Levenberg-Marquardt used in this paper shows good results 
in the learning phase and later simulation only with the 
measurable variables as software sensors. 
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