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ABSTRACT

Grey Box Neural Models (GBNM) constitute a real
alternative for those processes for which the available a
priori knowledge is incomplete. In this work an application
to a biotechnological process has been performed. Good
results of the GBNM acting as a software sensor for the non
measured state variables has been shown. However even if
the estimation performance is good, correct identification of
the time varying parameters is not assured. Identifiability of
these parameters has to be tested and some proposed
techniques are used in this work showing that the specific
growth kinetics and the specific production kinetics can be
identified although the last one is more difficult because of
its dependence on only one measured variable.

INTRODUCTION

In the development of dynamic system models it is better to
take advantage of a priori knowledge of a process, generally
expressed in terms of sets of ordinary differential equations
which represent mass or energy balances. In complex
biotechnological processes, the most difficult task is the
modeling of time varying parameters, such as the specific
kinetics. In order to address this problem, Psichogios and
Ungar (1992) proposed to use grey-box models which
combine a priori knowledge expressed in terms of a
phenomenological, or white-box model, with a black-box
model such as a neural network. These models have proved
to be satisfactory for dynamic systems, they have better
generalization characteristics, and they can be identified with
a smaller amount of data (Psichogios and Ungar, 1992).
Thompson and Kramer (1994) classified these grey-box
models into two principal categories: those which deliver
intermediate values (of parameters or variables) for use in
phenomenological models (serial grey-box models), or those
in parallel with the dynamic model, adjusted to compensate
for modeling errors (parallel grey-box models). Van Can et
al. (1996) showed that the series strategy resulted in grey-
box models with superior results. More recently Thibault et
al. (2000), and Acuia et al. (1999) have employed and
analyzed this type of models demonstrating their
performance and their use in complex processes.

Another problem that is often encountered concerns the
identifiability of those time varying parameters. This could
be a great problem because the aim of grey-box models is
not only to minimize the difference between the model
output variables and some targets but also to obtain a good
model of the unknown time-varying parameters in terms of
some relevant variables. So the question is how to know
when, even if the outputs are correctly estimated, we can
trust in the time-varying parameters values and hence in the
determined model. So, the objective of this work is to
develop a grey-box neural model for a biotechnological
process taking care of the identifiability of the time-varying
parameters by using some appropriate indices.

This article is organized as follow: first the biotechnological
process is described, then a section is devoted to grey-box
modeling. Identifiability methods are then presented
followed by some results and conclusions.

BIOTECHNOLOGICAL PROCESS

The bioprocess considered is the production of giberelic acid
(a vegetal growth hormone) by the filamentous fungi
Gibberella fujikuroi growing in a solid state batch culture
(SSC) at a laboratory level. A simplified model describing
the evolution of the main variables is reported in (Gelmi et
al., 2002). This phenomenological model based on material
balance laws considers 7 state variables: living Biomass (X),
measured Biomass (X,,), urea (U), intermediate nitrogen
(N)), soluble starch (S), giberelic acid (GA3), produced CO,
and consumed O,. Only the last two variables can be
directly measured on-line but for including parameter § into
the identifiability analysis we will also consider GA; as an
on-line measured variable. The model equations are the
following:
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corresponds to the specific growth rate and its
intermediate nitrogen dependence is modeled by a Monod
law. B corresponds to the specific production rate of giberelic

acid.
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The other model parameters were identified on the basis of
some specific experiments and experimental considerations.
Their values are included in Table I for controlled

temperature and water activity

conditions (T=25°C,

Aw=0,992).
Table 1: Model parameters
Name/Description Value
[T Maximum  specific | 0.28
growth rate [1/h]
ﬂetam Maximum  specific | 6.5 10
production rate [g GAs/g X h]
k Urea degradation | 1.33 10™
constant [g/h]
k, Constant 1.110°
[g Nyg.i.s.]
kq Dead constant 0.031
[1/h]
k Giberelic acid | 4.4 10
? degradation rate [1/h]
k. Intermediate 7.86 10°
' nitrogen production | [1/g NV, g.i.s.]
rate
mg S maintenance | 0.11
coefficient [gS /gXh]
Mco2 CO, maintenance | 0.11
coefficient [g CO, /g Xh]
Mo2 0, maintenance | 0.06
coefficient [g0, /gXh]
Y i Yield coefficient 20.8
[e X/gNi]
Y xss Yield coefficient 1.21
[gX/gS]
Y X/CO2 Yield coefficient 0.58
[g X /g CO]
Y x02 Yield coefficient 2.11
[gX/g O]

GREY BOX NEURAL MODEL

As previously mentioned GBNMs take advantage of the
combination of a priori knowledge surrounding a given
process expressed in terms of a set of differential equations
that represent the first principles that govern that process
with neural networks. The latter are responsible for the
modeling of the interaction between variables that are
relevant to the system, and certain parameters whose
expressions are difficult to model. It is a well established fact
that neural networks are capable of approximating non-linear
functions. In particular, it has been demonstrated that
perceptrons, with only one hidden layer and an adequate
number of neurons in their internal layer, are universal
approximators (Hornik et al., 1989).

For the purposes of the present work it is important to
distinguish between two training modes for neural networks
inserted in GBNMs. The first type, also known as the direct
learning mode (Acufia et al., 1999), uses the error generated
at the output of the neural network for the correct
determination of its weights (Figure 1).
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Figure 1: Grey-Box Neural Model in its direct learning
mode.

The second type corresponds to an indirect mode by which
the error generated at the output of the GBNM is used for the
training of the neural network (Acufa et al., 1999) (Figure
2).
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Figure 2: Grey-Box Neural Model in its indirect
learning mode.

In the present work the indirect learning mode of the neural
network is used. The neural networks used are multi-layered
perceptrons with only one hidden layer. The training
algorithm is error backpropagation combined with a
Levenberg-Marquardt optimization.

The validation of the results obtained is carried out with tests
that consist in evaluating the error produced when using the
GBNM as a software sensor for the non-measured variables.
The error index used is the Index of Agreement (IA), which
is presented below :
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Where O, and p, are the observed and predicted values
respectively, in time i, and N is the total number of
data. p,'= p,—0, and0,'=0,-0
median value of the observations.

where O, is the

m?

IDENTIFIABILITY METHODS

The identifiability of model parameters is determined using
techniques proposed by (Brun et al., 2002, Reichert and
Vanrolleghem, 2001) based on sensitivity and uniqueness
analyses. In fact model identifiability will be quantified by
measuring the sensitivity of the model output variables to the
time varying parameters determined by the neural network
part of the grey-box model.

If we considered the measured output variables as
y=@(x,t,0), where X corresponds to the state variables

at time t and @ to the unknown parameter vector then the
sensitivity matrix (dimensionless) is:

ay.
ss; = A ow'"? (11
26,
i=1... number of observations
j = l... number of parameters

w; correspond to a scale factor associated with the i™ output
variable and is defined as the inverse of the measurement
error variance.

A dimensionless index of sensitivity, defined by (Brun et al.,
2002) is:

. 1 N 2
5 = ﬁ;sij (12)

Low sensitivity implies low influence of the parameter to the
corresponding output hence low identifiability of this
parameter.

Uniqueness of the parameters depends on their correlation
(Zhang et al., 2003) which is computed from the variance-
covariance matrix of the estimated parameters.

)= cov(d,,6))
\Jeov(8,,8,)-cov(8,.6,)

Corr(6,,6,

A high correlation between the parameters means that they
cannot be uniquely identified from the available
observations.

RESULTS
Grey-Box Neural Model

The detailed GBNN considering equations (1)-(8) and the
fact that pu and B depend on Nj is shown in Figure 3. It is to
notice that the discretized model of egs. (1)-(8) is
represented as a neural network with fixed weights. Only the
black-box has variable weights which can be identified by
backpropagation considering appropriate activation and
transfer functions. 700 data points obtained from simulation
of the complete model (eqs (1)-(10)) were used for training
purposes while 300 data points were left for validation.
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Figure 3: Grey-Box Neural Model for the SSC process.

Two different tests have been built to evaluate the
performance and the robustness of the GBNM acting as a
software sensor for the first five state variables (eqgs (1)-(5)).
That means that the GBNM is used in a Model Predictive
Output (MPO) mode for those five variables (only from
initial conditions) and in an One Step Ahead (OSA) mode



(Billings et al., 1992) for the other three variables (eqs (6)-
®):

1. Results under ideal conditions (0% error and no
perturbations).

2. Results with an initial 250% error on the living biomass
and affected by a 5% amplitude gaussian noise on all the
state variables.

The initial value used for the living biomass (without noise
and any perturbation) is 0.01 (gr/gr).

Test 1

For concision reasons only the results on the three most
relevant variables or parameters for this analysis will be
shown. A very good coherence can be seen between the
simulated and estimated values of the living biomass (X) and
the specific growth rate as it is shown in figures 4 and 5.
Good results are also obtained for the estimation of the other
state variables ( IA > 0.99). A non as good estimation of the
specific production rate can be observed. This is probably
due to the exclusive dependence of this parameter to only
one output variable (GA;) as it is shown in Table II.
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Figure 4: Simulated (Continuous lines) and estimated (dotted
lines) living biomass
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Figure 5: Simulated (Continuous lines) and estimated (dotted
lines) specific growth rate.
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Figure 6: Simulated (Continuous lines) and estimated (dotted

lines) specific production rate.

Test 2

A large initial perturbation on the state variable (living
biomass) is quickly compensated by the GBNM acting as a
software sensor and a 5% noise affecting the output is well
filtered by the method. The error of 250% in the initial
living biomass, although is not a real case, allows to clearly
show the properties of convergence and stability of the
method, supposing that in a practical application a great error
in the initial conditions is committed, in the presence of
noisy measurements. General results are shown in figure 7,
8 and 9. The same above mentioned remark concerning the
specific production kinetics 3 has to be stated
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Figure 7: Simulated (Continuous lines) and estimated (dotted
lines) living biomass
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Figure 8: Simulated (Continuous lines) and estimated (dotted
lines) specific growth rate.
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Figure 9: Simulated (Continuous lines) and estimated (dotted
lines) specific production rate.

Identifiability Analysis
For computing the sensitivity matrix the derivative of the

output to the corresponding parameters was determined from
the following finite difference approximation:

ay,» _ y(x,t,é?j +A9j)_y(X,t50j)
26, AB

A small enough parameter perturbation A@i was used in

(13)

order to assure a small truncation error in the finite
difference approximation. The considered outputs and

parameters were respectively CO,,0,,GA4; and the

specific kinetics p and B. Hence the sensitivity matrix was
constructed from the determination of:

9CO, dCO, 90, 0, IGA, IGA,
ou, 9B, ow 9B ou " OB

(14)

In Table II results for the sensitivity index 5;"'W showing

that B has no influence over CO2 and O, are presented. It can
also be noticed that £/, has no influence over GA;.

Table 2: Sensitivity index 07" for different output

variables and parameters.

5 o |B
o, 0.0020 [0

0, 0.0012 [0

GA, 0 0.1311

Sensitivities of each parameter to the corresponding output
variables are shown in Figures 10, 11 and 12. The greater
influence of the parameters over the output variables ranges
from 100 to 400 (min) which corresponds to the period of
greater biomass growth.
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Figure 10: Relative sensitivity for CO2 output.
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Figure 11: Relative sensitivity for O2 output.
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Figures 12: Relative sensitivity for GA3 output.

Uniqueness of parameters was analyzed from the following
correlation Table (III).

Table 3: Correlation coefficients between estimated

parameters.
Corr(0,,60,) | # B
M 1 -0.8554
IB -0.8554 1

It can be seen that the low absolute value of the correlation
index between the parameters obtained (< 0.95) allows them
to be uniquely determined from an adequately identification
procedure.

CONCLUSIONS

GBNM constitute a real alternative for those real world
processes for which the available a priori knowledge is
incomplete, for example in a variety of industrial processes.
As in GBNM only some of the physical and/or chemical
laws that represent the model are known, and there are
unknown parameters that must somehow be estimated,
multi-layered perceptron neural networks have been
employed for their notable capacity to approximate complex
functions on the basis of observed data.

In this work an application to a biotechnological process has
been performed. Good results of the GBNM acting as a
software sensor for the non measured state variables has
been shown. Convergence and noise rejection capacities
were also some of the valuable features of this kind of
software sensor. However even if the estimation
performance is good, correct identification of the time
varying parameters is not assured. Identifiability of these
parameters has to be tested and some proposed techniques
are used in this work showing that both time-varying
parameters, the specific growth kinetics p and the specific
production kinetics B can be identified although the last one
is more difficult to be correctly identified because of its
dependence on only one measured variable (GA3).
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