

KutralNet: A Portable Deep Learning Model for Fire Recognition

Angel Ayala¹, Bruno Fernandes¹, Francisco Cruz² David Macêdo³, Adriano L. I. Oliveira³, and Cleber Zanchettin³ {aaam,bjtf}@ecomp.poli.br, francisco.cruz@deakin.edu.au, {dlm,alio,cz}@cin.ufpe.br

1. Deep Learning (DL) for fire recognition

- DL is a promising approach to fire recognition from still images due to its color, texture, and lack of fixed shape [1].
- DL approaches are still challenging for restricted hardware devices by the computational resources and model's complexity.
- DL for mobile devices intends to address these challenges.

2. Fundamental Convolutional Blocks

The inverted residual block[2], the depth-wise[3] and octave[4] convolutions are techniques to reduce the model's size and computation complexity.

The inverted residual block uses the separable depth-wise convolution, followed by a point wise convolution. Adapted from [2].

The octave convolution design. The green arrows update information, while red arrows exchange information between the two frequencies. Adapted from [4].

3. KutralNet Architecture

- We propose a low-complexity model to fire recognition inspired by FireNet[5], OctFiResNet[6], and a custom ResNet50[7], called KutralNet*.
- Additionally, we develop three portable models from the fundamental convolutional blocks.

The KutralNet architecture. Comprises three convolution layer blocks with a global average pooling which delivers the features to the fully connected (FC) layer with one neuron for each exit class. Consecutively, a softmax activation function is implemented at the top of the network.

The computational cost of each implemented model represented as parameters and flops.

$\operatorname{ResNet50}_{(22,4,22,4)} \qquad 31.91M \qquad 4.1$	
(224x224)	13G
OctFiResNet $_{(96x96)}$ 956.23K 928	.95M
FireNet _(64x64) 646.82K	-
KutralNet _(84x84) 138.91K 76.	85M

The KutralNet Mobile Octave resultant block. The most to left and right of the block present a point-wise convolution and, in the middle, the depth-wise convolution, all combined with the octave convolution with $\alpha = 0.5$.

The computational cost of each KutralNet portable variation represented as parameters and flops.

$\mathbf{Model}_{(InputSize)}$	Parameters	Flops
KutralNet _(84x84)	138.91K	76.85M
KutralNet Mobile _(84x84)	173.09K	43.27M
KutralNet Octave $_{(84x84)}$	125.73K	29.98M
KutralNet Mobile $Octave_{(84x84)}$	185.25K	24.59M

4. Results

The **test accuracy of each model** trained with different datasets and tested with FireNet-Test. The ResNet50 version gets better performance with the FiSmoA, followed by KutralNet.

The test accuracy of each portable model trained with different datasets and tested with FireNet-Test. The KutralNet Mobile Octave and KutralNet Octave outperforms the baseline results.

5. Conclusions

- Our KutralNet model performs better than previous models for fire recognition as a lightweight approach.
- KutralNet Mobile Octave achieves a good performance reducing the baseline model's complexity.
- As future works are considered to extend the portable approach to fire recognition and detection using a bounding box.

6. References

- [1] J. Alves, C. Soares, J. M. Torres, P. Sobral, and R. S. Moreira, "Automatic forest fire detection based on a machine learning and image analysis pipeline," in New Knowledge in Information Systems and Technologies. Springer International Publishing, 2019, pp. 240–251.
- [2] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen, "MobileNetV2: Inverted residuals and linear bottlenecks," in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2018, pp. 4510–4520.
- [3] F. Chollet, "Xception: Deep learning with depthwise separable convolutions," in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
- [4] Y. Chen, H. Fan, B. Xu, Z. Yan, Y. Kalantidis, M. Rohrbach, S. Yan, and J. Feng, "Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution," apr 2019.
- [5] A. Jadon, M. Omama, A. Varshney, M. S. Ansari, and R. Sharma, "FireNet: A specialized lightweight fire & smoke detection model for real–time iot applications," CoRR, vol. abs/1905.11922, 2019.
- [6] A. Ayala, E. Lima, B. Fernandes, B. L. D. Bezerra, and F. Cruz, "Lightweight and efficient octave convolutional neural network for fire recognition," in 2019 IEEE Latin American Conference on Computational Intelligence (LA-CCI), 2019, pp. 87–92.
- [7] J. Sharma, O. Granmo, M. Goodwin, and J. T. Fidje, "Deep convolutional neural networks for fire detection in images," in Engineering Applications of Neural Networks. Springer International Publishing, 2017, pp. 183–193.

Acknowledgment

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, Fundação de Amparo a Ciência e Tecnologia do Estado de Pernambuco (FACEPE), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) - Brazilian research agencies.

* We took **inspiration from Mapuche language** or Mapudungun where **kütral means fire**;

¹Escola Politécnica de Pernambuco, Universidade de Pernambuco, Recife, Brasil; ²School of Information Technology, Deakin University, Geelong, Australia; ³Centro de Informática, Universidade Federal de Pernambuco, Recife, Brasil;