
A Comparison of Humanoid Robot Simulators:
A Quantitative Approach

Angel Ayala 1, Francisco Cruz 2,3, Diego Campos 2, Rodrigo Rubio 2, Bruno Fernandes 1, and Richard Dazeley 3

1Escola Politécnica de Pernambuco, Universidade de Pernambuco, Recife, Brasil
2Escuela de Ingenierı́a, Universidad Central de Chile, Santiago, Chile.

3School of Information Technology, Deakin University, Geelong, Australia.
{aaam, bjtf}@ecomp.poli.br, {francisco.cruz, richard.dazeley}@deakin.edu.au,

{diego.campos, rodrigo.rubio}@alumnos.ucentral.cl

Abstract—Research on humanoid robotic systems involves a
considerable amount of computational resources, not only for
the involved design but also for its development and subsequent
implementation. For robotic systems to be implemented in real-
world scenarios, in several situations, it is preferred to develop
and test them under controlled environments in order to reduce
the risk of errors and unexpected behavior. In this regard, a
more accessible and efficient alternative is to implement the
environment using robotic simulation tools. This paper presents
a quantitative comparison of Gazebo, Webots, and V-REP, three
simulators widely used by the research community to develop
robotic systems. To compare the performance of these three
simulators, elements such as CPU, memory footprint, and disk
access are used to measure and compare them to each other. In
order to measure the use of resources, each simulator executes
20 times a robotic scenario composed by a NAO robot that must
navigate to a goal position avoiding a specific obstacle. In general
terms, our results show that Webots is the simulator with the
lowest use of resources, followed by V-REP, which has advantages
over Gazebo, mainly because of the CPU use.

Index Terms—robotic simulator, simulation tools comparison,
humanoid robot, NAO

I. INTRODUCTION

The implementation of robotic solutions represents a costly
and time-consuming process. For this reason, robot simulators
have emerged as an important complementary tool [1], being
a fundamental part of the development of robotic solutions.
Robot simulators allow evaluating the feasibility and efficiency
of algorithms varying in type and complexity, in a more
controlled environment with no disturbances avoiding the
occurrence of accidents [2].

In recent years, the number of simulation tools available has
grown substantially for the use of different kinds of robots [3].
For the use of humanoid robots, the development of novel
solutions represents a complex challenge in the simulation
due to the high number of joints, and the contact between
different surfaces and textures [4], [5]. In this regard, to
evaluate available robot simulators, it is an important aspect
for the scientific and academic community in order to facilitate
the selection of the most suitable simulation tool [6].

In developmental robotics, robot simulators have been also
widely used in order to simplify experimental analysis [7]–
[9]. However, the decision about what simulator to use rarely
consider aspects such as performance or use of resources.
Previous works have addressed the comparison of simulators
from different perspectives or points of view, including the
comparison between different physics engines [3] and sim-

Simulation tools

used in
Physics engines Simulation systems

Computations in 
joint coordinates

Computations in
cartesian coordinates
(joints as constraints)

Platform-specific robot
simulation/control

Generic

Fig. 1. A simple classification of simulation tools, separated in two main
categories; (a) Physics engines: are responsible for the representation of
rigid-body structures and its dynamics, computed in joint coordinates (e.g.,
MuJoCo, XDE) or in cartesian coordinates (e.g., ODE); and (b) Simulation
systems: as an integral environment for the development of simulations with
a user interface, build upon a physics engine, platform-specific (e.g., iCub,
HRP) or generic (e.g., V-REP, Gazebo). Adapted from [6].

ulation systems [6]. Figure 1 presents a general overview of
the previously evaluated simulation tools. In this classification,
a physics engine is considered the software responsible for
representing rigid-body structures, as well as the dynamics of
movement and contact between different structures. A simu-
lation system is a complete suite containing physics engines,
which can incorporate a model editor, sensor simulation, and
the possibility of interaction with the user.

A simulation tool must be able to compute a large number
of mathematical operations to carry out the best possible
reproduction of the real-world aspects in a computational way.
To perform a simulation task requires a determined amount
of resources, and thus, different simulators can offer the ex-
ecution of the implemented task with different configurations
of resources depending on their working method. Tasks that
require a large number of calculations are those that must be
fulfilled by humanoid robots, in part due to the number of
joints that must be operated during a simulation [10].

For robot simulators, there has been previous analysis and
comparisons considering qualitative elements, covering hardly
quantitative aspects. The discussion of these comparisons is
in the next section. In this paper, we present a quantitative
comparison approach for the Gazebo1, Webots2, and V-REP3

simulators. This comparison considers aspects such as CPU,

1See http://gazebosim.org/
2Since December 2018, Webots is released as an open source software

under the Apache 2.0 license. See https://www.cyberbotics.com/
3Since November 2019, V-REP simulator has been replaced by Cop-

peliaSim version 4.0. See https://www.coppeliarobotics.com/



memory footprint, and disk usage being evaluated using a
humanoid robot scenario in a domestic situation.

II. RELATED WORKS

It is not simple to define a single aspect or metric to
establish the best simulator. Nevertheless, different authors
have previously addressed qualitative aspects, and some of
them have included quantitative aspects, focusing on compar-
ing between open-source and closed-source simulation tools.
Ivaldi et al. [6], addressed a qualitative comparison of different
simulation tools through a survey applied to 119 users. Most
of the users worked in control and locomotion with humanoid
and mobile robots, doing research in academic, public, or
private areas. Additionally, experiments were carried out with
the iCub humanoid robot in Gazebo, XDE, and the official
iCub simulator, showing that the first two were capable of
simulating contact more similarly to real-world. The obtained
results demonstrated that users prioritize a more realistic
simulation and the use of the same code for simulated and
real robots. The Gazebo simulator was considered as the
best choice of open-source software, and V-REP as the best
commercial simulator with a free educational license.

A similar approach was addressed by Torres-Torriti et
al. [11], who performed a comparative study of free simulation
tools for mobile robots. In their work, the authors presented a
qualitative and quantitative comparison of three free publicly
available simulation software: Carmen, Player-Stage-Gazebo,
and Microsoft Robotics Developer Studio simulators, along
with the Open Dynamics Engine (ODE) physics engine. The
selection of these tools was based on existing documentation
and support as well as the time required for physical accuracy.
In the qualitative comparison, the main physics modeling
capabilities and middleware functionality were considered but
without the user interface, due to it not being relevant to
the use of the simulator. For the quantitative comparison,
two scenarios were considered to evaluate the simulations
against the real-world experimental metrics. The first scenario
considered longitudinal motion and the second one an open-
loop control command sequence. As a general conclusion,
they did not claim any software as being superior to others.
However, they showed that the ODE engine presented a more
consistent simulation.

A recent work, presented by Pitonakova et al. [12], com-
pared the V-REP, Gazebo, and ARGoS simulators. For the
qualitative aspects, the built-in features, robot libraries, pro-
gramming methods, and the interface’s usability were consid-
ered. For the quantitative comparison, two benchmarks were
defined. The first benchmark considered the execution through
its graphical user interface, and the second one considered
a headless execution, i.e., without the user interface. Addi-
tionally, two scenarios had been set up; the first scenario
considered a large 2D plane, and the second one an industrial
building model with 41,600 vertices. Each benchmark was
executed with 1, 5, 10, and 50 robots in each scenario, defin-
ing three performance metrics: real-time factor (simt/realt),
CPU, and memory usage. The results showed that the V-REP
simulator was the most resource consuming, but at the same
time presented the most significant amount of features, as well
as the ability to create new threads to make efficient use of the

CPU. Moreover, ARGoS presented a better balance between
robot quantity and physics accuracy, being a suitable option for
simulation of swarm robotics tasks. However, in ARGoS, all
models used had to be previously developed in OpenGL4. In
the study, Gazebo was shown to be slightly more efficient than
ARGoS and with similar features as V-REP. However, it was
evaluated as being not very user-friendly. Furthermore, other
recent works also addressed comparisons of simulators under
other concepts such as multi-robots systems [13], agent-based
simulators [14], and swarm robotics [15], among others.

III. SIMULATION SOFTWARE

Simulation tools have allowed the rapid development of
prototypes in controlled environments against possible failures,
contributing to their implementation in the physical world [16].
Furthermore, they make it possible to learn and study the
physics of dynamic systems, as well as promoting collabo-
ration with the scientific community through the exchange of
early knowledge.

In this regard, simulation has become an essential part in de-
veloping robotic solutions, contributing to optimize algorithms
for motion, rapid prototyping of controllers and actuators, as
well as prior environment verification. Nowadays, there are
a large number of software tools for simulations that are
available for the scientific community. However, up to now,
comparisons in terms of computational resources considering
humanoid robots have been only briefly covered. The main
difficulty in analysing and comparing simulators is that they
have different requirements and characteristics. Therefore, the
robot performance cannot always be evaluated directly in a
simulation environment [6], [17].

In order to get a computer simulation, a physics engine
is required [3]. The physic engine is the software capable
of modeling different dynamic systems of physics such as
particles or contact, among others. Afterward, it is common
to use a development environment software to facilitate the
simulation development, where the elements of the simula-
tion are defined [6]. Another important aspect that has been
developed over the last few years is the use of the Robot
Operating System (ROS), a flexible framework created in
2007 by Stanford’s artificial intelligence laboratory for the
development of software for robots [18]. ROS is a middleware
that provides a large number of tools and libraries that aim to
simplify the task of creating a complex and robust robotic
behavior in a wide variety of robotic platforms. A great
advantage of ROS is the possibility of using the developed
code for both the simulated and the real environment.

The simulation software selected for this work are Gazebo,
Webots, and V-REP, having received the most positive eval-
uations and are the most widely used open-source (Gazebo
and Webots) and closed-source (V-REP) as mentioned in [6].
Additionally, the physics engine used to evaluate the different
simulation systems corresponds to the Open Dynamics Engine
(ODE5) that has been previously analyzed and shown the most
physical consistency [11], [12]. All the simulation systems
in this study are compatible with ROS for the execution of

4OpenGL is an Application Programming Interface (API) to produce and
build 2D and 3D objects.

5See https://www.ode.org/



(a) Gazebo simulator. (b) Webots simulator. (c) V-REP simulator.

Fig. 2. The robotic scenario for the evaluation of the different simulators. This scenario is composed of a NAO robot and a chair. The NAO has to navigate
around the chair, avoiding a collision, to reach the goal on the other side.

the simulations, moreover, most of them can be used through
C/C++ language, JAVA, Python, among others. Below is a
description of each simulator.

A. Gazebo

Gazebo’s development has been driven by the increasing
use of robotic vehicles [13]. It is capable of simulating inter-
actions between robots in indoor and outdoor environments,
providing realistic sensor feedback. Gazebo is thus designed to
accurately reproduce the dynamics of the environments that a
robot may encounter. This simulator work with two processes,
client and server, which is capable of simulating from a remote
machine. Furthermore, it is entirely open-source and freely
accessible, with a broad base of contributors supporting this
tool. In addition, the default physics engines integrated with
Gazebo include ODE, Bullet, Simbody, and DART [17].

B. Webots

Webots is an open-source robot simulator that provides a
complete development environment [19] for modeling, pro-
gramming, and simulating robots [20]. Thanks to its easy to
use and friendly interface, it can add or remove objects or
robots and evaluate their possible benefit of the simulation
scenario, requiring a small amount of time for development.
Moreover, it includes a compiler, which makes possible to
test and validate control algorithms involving complex data
processing quickly. Like Gazebo and V-REP, it comes with
the ODE physical engine integrated.

C. V-REP

V-REP was introduced as a versatile and scalable simulation
framework. By offering a multitude of different programming
languages, it allows embedding controllers and functional-
ity into simulation models, which facilitates the task for
developers and reduces implementation complexity for the
users [21]. It has now grown into a robust and widely used
robot simulator, available for both academically and in the
industrial field. V-REP is closed-source with a free educational
license. Moreover, V-REP has different options for physics

engines, including Bullet Physics, ODE, Newton, and Vortex
Dynamics.

IV. ROBOTIC SCENARIO

The defined scenario used for the quantitative evaluation
of the simulators involves a task performed by a humanoid
robot. The utilized humanoid is a NAO robot [22], which has
to perform the task of navigating to a goal position, avoiding
an obstacle located between its starting position and the goal.
This object on the scene is a chair that remains motionless at
all times. In this scenario, the humanoid robot must be able
to go around the object in order to avoid the collision and
complete the task. In Figure 2, the scenario is shown in the
different simulators. The definition of such a scenario is mainly
based on evaluating the performance under a large number of
turns and movements made by the robot, thus requiring the use
of multiple joints. The execution of multiple movements by
the robot makes it possible to observe the workload required
for each simulator to be capable of performing the task. To
estimate the workload, CPU, memory, and disk use metrics
are used for each simulation run. No other software has been
executed during the simulation to prevent the measurement be
affected by other factors.

A. NAO Robot

NAO is a humanoid robot developed in 2008 by Alde-
baran Robotics, a French company subsidiary of the Softbank
Robotics Group. It is primarily used for education and research
of humanoid robots. Among its main features is the ability to
perceive the environment from its multiple sensors, including
two cameras, four microphones, nine tactile sensors, two
ultrasonic sensors, eight pressure sensors, an accelerometer,
and a gyroscope. Moreover, it includes other expression el-
ements that give it a high degree of interactivity, like its 53
RGB LEDs, its voice synthesizer, and its two speakers [20].
The software structure is based on the open-source Linux
operating system and supports programming languages such
as C, C++, URBI, Python, and .NET Framework. Additionally,
a graphical interface has been developed for the robot called



5 10 15 20

10%

15%

20%

25%

30%

35%

40%

45%

Webots
Gazebo
V-REP

CPU usage by execution

Execution

U
sa

ge

Fig. 3. The CPU required for each simulator during 20 executions of the
robotic scenario. The Webots simulator required about an 11.05% of CPU to
execute the scenario, followed by V-REP with an average of 20.65%. Finally,
Gazebo required considerable more CPU (42.38% average) to simulate the
task.

5 10 15 20

170

180

190

200

210

220

230

240
Webots
Gazebo
V-REP

Memory usage by execution

Execution

M
eg

aB
yt

es

Fig. 4. The memory required for each simulator during 20 executions of the
robotic scenario. The V-REP simulator presented a stable memory use (just
212MB), moreover, the Webots simulator required less memory (176.6MB
average), followed by Gazebo with 203.64MB average for the task execution.

Choreographe [23]. Choreographe allows interactive program-
ming of actions with different levels of complexity using
flow diagrams. This interface provides the ability to work in
line with the robot hardware, maintaining dialogues and even
obtaining object and person recognition through its cameras.
This software is compatible with different operating systems
such as Windows, iOS, and GNU/Linux. Moreover, NAO has
native support in Webots and unofficial support in V-REP and
Gazebo simulators.

B. Metrics software

To measure the resources utilized during the simulation two
tools have been used:

5 10 15 20

0%

2%

4%

6%

8%

10%

Webots
Gazebo
V-REP

Disk usage by execution

Execution

U
sa

ge

Fig. 5. The disk use for each simulator during 20 executions of the robotic
scenario. It can be observed that Webots required almost no disk access (0.12%
average) for the execution of the simulation. For Gazebo, an average of 5.96%
disk access is required, followed by V-REP with 8.16%.

• GNU Monitor System to measure in real-time the perfor-
mance of our machine (see section IV.C). This application
is used to obtain information of the performance associ-
ated to three different aspects: (i) processes, presenting
a list with all the processes in execution and capable of
ordering them according to the resource they are using at
every moment; (ii) resources, it is possible to visualize a
real-time graph of memory and CPU usage; and (iii) file
system, it is possible to obtain information regarding the
space occupied on the hard disk.

• Iotop Monitor is a free, open-source utility similar to the
top command, which provides an easy way to monitoring
disk usage details through a table of existing usage per
process or sub-process in the system. The Iotop tool is
developed in Python and requires the kernel counting
function to monitor and display the processes. It is a
handy tool for system administrators to track specific
processes that may cause a high level of reading/writing
on the disk.

C. Machine specifications

The comparison was carried out using a virtual machine
configured in VirtualBox v5.2 comprising an Intel® Core™

i5-2410M @2.30GHz, 6GB of memory, and 320GB Hitachi
SATA II @7200 RPM hard disk drive. The selected operative
system for this purpose was Ubuntu 18.04.1 LTS, installed
only with the essential packages required for its execution.
The Ubuntu distribution and the version chosen presents a
wide support community for the installation and configuration
of different simulation tools, as well as great compatibility
with ROS.

V. SIMULATION AND RESULTS

The task introduced in the previous section was imple-
mented to achieve the measurement of the quantitative data. To
code the robot’s behavior, Choreographe was used for V-REP



Gazebo Webots V-REP

10%

15%

20%

25%

30%

35%

40%

45%

CPU performance by simulator

Simulator

C
P

U

(a) CPU use boxplot of 20 executions. The simula-
tor with smallest standard deviation is Webots with
0.56, followed by V-REP with 1.04, and Gazebo
with 1.46.

Gazebo Webots V-REP

170

180

190

200

210

220

230

240

Memory performance by simulator

Simulator

M
em

or
y

(b) Memory boxplot of 20 executions. The simula-
tor with smallest standard deviation is V-REP with
0.0, followed by Webots with 6.36, and Gazebo
with 24.0.

Gazebo Webots V-REP

0%

2%

4%

6%

8%

10%

Disk use performance by simulator

Simulator

D
is

k 
us

e

(c) Disk access boxplot overall of 20 executions.
The simulator with smallest standard deviation is
Webots with 0.04, followed by Gazebo with 0.61,
and V-REP with 1.01.

Fig. 6. Averaged results for 20 executions of the measured elements to compare the simulators in a quantitative approach. Webots is the simulator that
requires less amount of resources in order to execute the humanoid simulation task. Follow, the Gazebo simulator required fewer resources than V-REP, but
this presented more CPU use, and the memory footprint presented significant differences between executions. Finally, the V-REP is the second simulator that
used less amount of resources, with a stable memory consumption.

and Gazebo simulators. For Webots, internal library methods
were directly employed to produce the same robot’s behavior.
This introduces no significant difference in the experiments
since the metrics were measured isolated for each simulator,
using Choreographe just as a graphical tool to design the
robot’s movement. As previously discussed, we have defined
as comparative elements for the different simulators, the use
of CPU, memory footprint, and disk access. To specify the
impact of each defined comparative element over the global
comparison, these were weighted equally, showing no predis-
position to favor any particular aspect.

To compare the performance, the simulated scenario was run
20 times for each simulator. In Figure 3 is shown the CPU load
for each simulation run. The Webots simulator required the
lowest amount of processing power, using in average 11.05%
of the processor to execute the simulation tasks. Following, V-
REP used almost twice of CPU, with an average of 20.65%.
For Gazebo, the use of CPU was the highest, presenting an
average of 42.38%, for the execution of a simple simulation
task. The issue that Gazebo used this amount of CPU is
attributed to the use of two processes: gzclient (client) and
gzserver (server).

The memory footprint, in Figure 4, is represented in
Megabytes required for the simulation execution. Firstly, the
memory footprint of V-REP was stable, always requiring the
same amount of memory. Quite the opposite was observed
in the case of Webots and Gazebo, requiring a variable
amount of memory for each execution. Webots presented a
more stable memory footprint with low differences between
each execution, while Gazebo showed a significant memory
difference between executions.

The disk usage metric, in Figure 5, presents the transactions
that are allocated for disk access to write/read as percentage of
all performed operations. In general, all the simulators required
a low amount of disk transactions. For Webots, almost no disk

use was required in order to execute the simulation, presenting
a 0.12% average of disk access. Gazebo and V-REP required
almost the same disk usage, with an average of 5.96% and
8.16%, respectively.

Moreover, Figure 6 summarizes the results of the 20 ex-
ecutions through statistical boxplots representation for each
comparative element and each simulator. It can be seen that
both CPU and disk usage, shows a considerable variation
among simulators. Generally speaking, Webots is the simulator
that uses fewer resources for the task execution, being able
to simulate efficiently with CPU use ∈ [10%; 12.1%] and
memory footprint ∈ [169MB; 191MB]. Additionally, the sim-
ulation is executed in a fast way, given that no disk operations
were required (values ∈ [0.1%; 0.2%]). In comparison, V-
REP requires almost twice as much CPU than Webots, with
CPU use ∈ [19%; 22%], and the simulation execution per-
forms some on-disk operations with values ∈ [6.07%; 9.78%].
However, the memory footprint presented for V-REP is stable
over all the runs; this is an advantage, even being 20.39%
(on average) higher than the memory required by Webots.
Finally, Gazebo presents fewer on-disk operations than V-REP,
with values ∈ [5.01%; 6.83%]. Nevertheless, due to the client
and server processes required for the simulation execution,
Gazebo uses twice as much CPU than V-REP, with CPU
use ∈ [40.11%; 44.88%]. In relation to the memory, although
Gazebo presents a lower average amount than V-REP, also
shows instability with great variations between executions.

VI. CONCLUSIONS

Research in the area of robotics present a high computa-
tional cost in its development, from planning how the system
works to hardware implementation. To ensure that a certain
solution is feasible to be implemented in a real-world scenario,
in several occasions, it is executed and tested in a controlled
and simulated environment. In this work, simulation systems



such as Gazebo, Webots, and V-REP have been compared,
evaluating the use of resources such as CPU, memory foot-
print, and disk access. For this evaluation, a task using the
humanoid robot NAO has been implemented, in which the
robot has to navigate to a goal position avoiding an obstacle
in the middle of its trajectory.

The evaluation of the simulators, have shown similar char-
acteristics among them, such as compatibility with a Linux-
based operating system, as well as its modular communication
capability through an API in programming languages such as
Python and C/C++. Additionally, they all include the ODE
engine for the simulation of physics in the virtual environment.
Contrarily, all the simulators present different complexities for
the development of the proposed simulated scenario. In Webots
and V-REP, NAO is natively integrated, while in Gazebo, it
is necessary to make a manual installation with third-party
libraries. Although the robot must be controlled by an external
API, it has been shown through the obtained results to be
quite effective, achieving a successful simulation without any
significant drawbacks.

Analyzing the results, Webots obtains the best score to
execute the simulation with the NAO robot, requiring the less
amount of resources in order to perform the simulation task.
However, V-REP presents a stable use of memory with a
large library of models for simulation. Finally, Gazebo also
requires almost the same resources, considering it contains
two processes due to a networking implementation design, and
without having the NAO model integrated.

The obtained results may inspire future research in different
directions. Future work includes considering other metrics for
the comparison, such as time, with different physics engines as
well as the inclusion of other robot simulators. Additionally,
a more comprehensive comparison should take into account
different kind of scenarios, from simple tasks to more complex
ones using tools as direct planning, direct and inverse kinemat-
ics, collision avoidance, and image processing among others,
as well as other kinds of robot platforms. Moreover, a more fair
comparison could weigh in a different way each quantitative
aspect, giving more preponderance to some of them, as well
as including qualitative aspects into the comparison for mixed
approaches.

ACKNOWLEDGMENT

This work has been financed in part by Universidad Cen-
tral de Chile under the research project CIP2018009, the
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Su-
perior - Brasil (CAPES) - Finance Code 001, Fundação
de Amparo a Ciência e Tecnologia do Estado de Pernam-
buco (FACEPE), and Conselho Nacional de Desenvolvimento
Cientı́fico e Tecnológico (CNPq) - Brazilian research agencies.

REFERENCES

[1] P. S. Andrews, S. Stepney, and J. Timmis, “Simulation as a scientific
instrument,” in Proceedings of the 2012 workshop on complex systems
modelling and simulation, Orleans, France, 2012, pp. 1–10.

[2] F. Cruz, G. I. Parisi, and S. Wermter, “Learning contextual affordances
with an associative neural architecture,” in Proceedings of the European
Symposium on Artificial Neural Network. Computational Intelligence
and Machine Learning ESANN. UCLouvain, 2016, pp. 665–670.

[3] T. Erez, Y. Tassa, and E. Todorov, “Simulation tools for model-based
robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX,” in
2015 IEEE international conference on robotics and automation (ICRA).
IEEE, 2015, pp. 4397–4404.

[4] F. Cruz, P. Wüppen, S. Magg, A. Fazrie, and S. Wermter, “Agent-
advising approaches in an interactive reinforcement learning scenario,”
in Proceedings of the Joint IEEE International Conference on Devel-
opment and Learning and Epigenetic Robotics ICDL-EpiRob. IEEE,
2017, pp. 209–214.

[5] P. Barros, A. Tanevska, F. Cruz, and A. Sciutti, “Moody learners –
explaining competitive behaviour of reinforcement learning agents,”
arXiv preprint arXiv:2007.16045, 2020.

[6] S. Ivaldi, J. Peters, V. Padois, and F. Nori, “Tools for simulating
humanoid robot dynamics: A survey based on user feedback,” in 2014
IEEE-RAS International Conference on Humanoid Robots. IEEE, 2014,
pp. 842–849.

[7] V. Tikhanoff, A. Cangelosi, and G. Metta, “Integration of speech
and action in humanoid robots: icub simulation experiments,” IEEE
Transactions on Autonomous Mental Development, vol. 3, no. 1, pp.
17–29, 2010.

[8] F. Cruz, P. Wüppen, A. Fazrie, C. Weber, and S. Wermter, “Action
selection methods in a robotic reinforcement learning scenario,” in 2018
IEEE Latin American Conference on Computational Intelligence (LA-
CCI). IEEE, 2018, pp. 13–18.

[9] I. Moreira, J. Rivas, F. Cruz, R. Dazeley, A. Ayala, and B. Fernandes,
“Deep reinforcement learning with interactive feedback in a human-
robot environment,” arXiv preprint arXiv:2007.03363, 2020.

[10] J. Craighead, R. Murphy, J. Burke, and B. Goldiez, “A survey of
commercial & open source unmanned vehicle simulators,” in Proceed-
ings 2007 IEEE International Conference on Robotics and Automation.
IEEE, 2007, pp. 852–857.

[11] M. Torres-Torriti, T. Arredondo, and P. Castillo-Pizarro, “Survey and
comparative study of free simulation software for mobile robots,”
Robotica, vol. 34, no. 4, pp. 791–822, 2016.

[12] L. Pitonakova, M. Giuliani, A. Pipe, and A. Winfield, “Feature and
performance comparison of the V-REP, Gazebo and ARGoS robot sim-
ulators,” in Annual Conference Towards Autonomous Robotic Systems.
Springer, 2018, pp. 357–368.

[13] F. M. Noori, D. Portugal, R. P. Rocha, and M. S. Couceiro, “On 3D
simulators for multi-robot systems in ROS: MORSE or Gazebo?” in
2017 IEEE International Symposium on Safety, Security and Rescue
Robotics (SSRR). IEEE, 2017, pp. 19–24.

[14] S. Abar, G. K. Theodoropoulos, P. Lemarinier, and G. M. O’Hare,
“Agent based modelling and simulation tools: A review of the state-
of-art software,” Computer Science Review, vol. 24, pp. 13–33, 2017.

[15] V. J. Zhong, R. Dornberger, and T. Hanne, “Comparison of the behavior
of swarm robots with their computer simulations applying target-
searching algorithms,” International Journal of Mechanical Engineering
and Robotics Research, vol. 7, no. 5, 2018.

[16] F. Cruz, G. I. Parisi, and S. Wermter, “Multi-modal feedback for
affordance-driven interactive reinforcement learning,” in Proceedings of
the International Joint Conference on Neural Networks IJCNN. IEEE,
2018, pp. 5515–5122.

[17] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. IEEE, 2004, pp. 2149–2154.

[18] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: An open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[19] O. Michel, “Cyberbotics Ltd. Webots: Professional mobile robot simula-
tion,” International Journal of Advanced Robotic Systems, vol. 1, no. 1,
pp. 39–42, 2004.

[20] P. Shahverdi and M. T. Masouleh, “A simple and fast geometric kine-
matic solution for imitation of human arms by a NAO humanoid robot,”
in 2016 4th International Conference on Robotics and Mechatronics
(ICROM). IEEE, 2016, pp. 572–577.

[21] E. Rohmer, S. P. Singh, and M. Freese, “V-REP: A versatile and scalable
robot simulation framework,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2013, pp. 1321–1326.

[22] D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. Lafour-
cade, B. Marnier, J. Serre, and B. Maisonnier, “Mechatronic design of
NAO humanoid,” in 2009 IEEE International Conference on Robotics
and Automation. IEEE, 2009, pp. 769–774.

[23] E. Pot, J. Monceaux, R. Gelin, and B. Maisonnier, “Choregraphe: A
graphical tool for humanoid robot programming,” in RO-MAN 2009-The
18th IEEE International Symposium on Robot and Human Interactive
Communication. IEEE, 2009, pp. 46–51.




