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Abstract—Designing the decision-making processes of artifi-
cial agents that are involved in competitive interactions is a
challenging task. In a competitive scenario, the agent does not
only have a dynamic environment but also is directly affected
by the opponents’ actions. Observing the Q-values of the agent
is usually a way of explaining its behavior, however, it does
not show the temporal-relation between the selected actions. We
address this problem by proposing the Moody framework that
creates an intrinsic representation for each agent based on the
Pleasure/Arousal model. We evaluate our model by performing
a series of experiments using the competitive multiplayer Chef’s
Hat card game and discuss how by observing the intrinsic
state generated by our model allows us to obtain a holistic
representation of the competitive dynamics within the game.

Index Terms—Explainable Artificial Intelligence, Reinforce-
ment Learning, Intrinsic Confidence.

I. INTRODUCTION

The application of reinforcement learning (RL) models has
been on a rise following the onset of deep reinforcement learn-
ing [1]. The ability of RL models to solve complex problems,
represented mostly by the association of high-dimensional
states and a large number of discrete or continuous actions, has
recently led to the development of expert systems for guiding
autonomous cars [2], [3], predicting the stock exchange impact
[4], [5], and coordinating a swarm of robots to protect the
environment [6], [7], to name a few examples.

As their popularity grows, the need for providing stable and
trustworthy solutions for real-world problems also increases.
When deployed in production environments, these RL models,
although designed to achieve impressive performance, are not
easily understandable, and thus need experts to address the
problems that may arise. The robustness of the RL solutions
is thus limited by the general inability of explaining easily
how these models learn and derive their state-action mapping
[8]. This has led to the fast development of eXplainable AI
(XAI) [9] as a complementary field for deep reinforcement
learning.

The community around XAI has been investigating how to
approach the understanding of reinforcement learning when
applied to different problems. Problems that involve the pro-
cessing of human-based data are somehow the easiest ones
to address, as demonstrated by explaining recommendation
systems [10], applications on the medical domain [11], and
robotics applications based on known behavior [12]. However,
it is much more difficult to explain the agents’ behavior in
scenarios where the environment cannot be easily modeled
[13], or the solutions are unknown a priori [14]. In this regard,
recent applications derive human-level explanation based on

the agent’s own knowledge of the situation [15]. In particular,
transforming the selected Q-values for each action into a
confidence metric, using a re-shaping function based on the
logarithmic transformation [15], improved the understanding
of a robot trying to solve a grid-based navigation task. The
confidence metric measures how a specific action contributes
to the robot reaching its goal however it does not carry any
temporal correlation between the actions selected by the agent
during the navigation. This means that the metric cannot be
used to explain the behavior of the agent within the entire
simulation, but only for each action.

This approach functions quite well when the end state of
the task is clearly defined, and it is possible to measure the
distance between the current state and the end state. However,
it does not deal well with competitive scenarios where a set of
agents have to learn decisions that a) maximize their goal, and
b) minimize their adversaries’ goals. Besides considering the
dynamic of the scenarios, they usually have to deal with the
interactions between the agents themselves. Some of the most
common applications for competitive reinforcement learning
involve the design and implementation of learning agents in
simulations that simplify several aspects of the real world
such as the implementation of grid-based autonomous vehicles
[16], life-simulation/resources gathering [17], and multi-player
games [18]. In these cases, explaining the agents’ behavior
based on the simplified environment is somehow possible, but
they would not scale for real-world applications.

In this regard, we propose a novel methodology to explain
the behavior of artificial agents in real-world modeling a
competitive scenario. We deploy our experiments onto the
multiplayer Chef’s Hat card game [19] as it offers a dynamic
interaction between the players and simulates directly the real-
world counterpart game. In the scenarios’ baseline, four agents
play against each other and their performance is measured
directly based on how many games they win [20]. It is not
possible, however, without an extensive manual observation of
their action-selection pattern to explain their winning behavior
while the game happens.

To identify the impact of each selected action, we propose
the Moody framework which uses the agents’ own evaluation
of the game to provide a temporal reference for the impact
of selected actions and translate it into an pleasure/arousal
representation [21] of the agent’s mood. Our method builds
on the introspective transformation from the Q-values [15],
and introduces a Growing-When-Required (GWR) network to
transform confidence readings into the pleasure/arousal scale,
and to create strong inter-action correlation, which directly



maps the action-selection-mood triplet in our competitive card
game scenario and carries a temporal momentum that we use
to explain the agents’ performance while the game happens.

We also investigate the Moody framework as a tool for
explaining the agents’ behavior under a competitive perspec-
tive. The intrinsic mood readings are directly formulated by
an agent assessing its own actions. In a competitive scenario,
the actions of the agent’s opponents impact directly the agents’
own mood. Thus, being informed on how each agent perceives
their opponent’s actions can give us a much richer explanation
of the performance of the agent while the game happens.

In this paper, we formalize the entire Moody framework, and
aim on addressing two main research questions: 1) How the
mood readings provide the understanding of the agents’ behav-
ior on the Chef’s Hat game; 2) How close is the representation
of the mood estimated by an agent about its opponents from
the real mood of each of these opponents. To answer these
questions we perform a series of experiments where different
agents play a series of games using the Chef’s Hat simulation
environment. We explain how the agents’ own assessment of
the opponents’ actions impacts the performance explanation.
Also, to better understand the impact of the Moody framework
on the XAI community, we discuss the effect of our self-
evaluation in competitive scenarios and how they can provide
a closed-world representation of the entire game.

II. GAME MECHANICS AND AGENTS IMPLEMENTATION

A. The Chef’s Hat Card Game
The game setup which we used as an environment for our

artificial agents is the Chef’s Hat card game [22]. Chef’s Hat as
a game provides a controllable action-perception cycle, where
each player can only perform a restricted set of actions. This
in turn allows each player to behave as organically as possible,
and allows us to directly measure the impact of each action
within the naturally-controllable real-world scenario.

Chef’s Hat is a 4-player round-based card game, where each
person has a restaurant-context role (Chef, Sous-Chef, Waiter
or Dishwasher), that is updated after each game based on the
order of finishing the previous match. At the beginning of
the game the players get the full hand of cards (17 cards per
player) dealt to them, and taking turns they need to dispose
of their cards as quickly as possible. The cards represent
ingredients for pizzas, and each round consists of the players
making pizzas by discarding cards in a certain manner. The
details of the pizza-making rules and the role hierarchy are
explained fully in the games’ formal description [22]. In order
to better explain our model, we detail the flow of one full game
in Algorithm 1.

B. The Chef’s Hat Simulator Implementation
We implemented our scenario using the OpenAI-based

simulation environment of Chef’s Hat [19]. The environment
simulates all of the game mechanics, and thus provides a
1:1 simulation of the real-world game, and provides an easy
implementation of different agents to play the game, as shown
in Figure 1.

The current game state for each player is represented as an
aggregation of the cards of the player and the current cards
in the playing field for a total of 28 values. Each player can
choose among 200 different actions to perform in each state,
each of them representing a unique combination of cards to
be discarded, or a pass action.

Shuffle the deck;
Deal an equal amount of cards per player;
Exchange roles;
Exchange cards;
if special action is evoked then

Do special action;
end
FirstPlayer← Hasgolden11
FirstPlayer discard cards.
while not end of the game do

for each player do
if player can, and want, to discard then

discard cards;
else

pass;
end
if All players passed then

Make the pizza;
FirstPlayer← Last playertodiscard

end
if All players finished then

End of game.
end

end
end

Algorithm 1: The Game-flow of the Chef’s Hat card game.

Fig. 1. Chef’s Hat rendered simulation environment.

In order for the simulated players to be able to select their
actions in an intelligent manner, we needed to train artificial
agents to play Chef’s Hat. For this we employ two different
reinforcement learning algorithms based on Q-learning, which
allow our agents to apply a temporal-difference calculation
when updating the policy network and thus maximize the state
transitions that will lead to the optimal reward.

C. The Learning Agents
The main characteristic of the Moody Framework is to

provide a self-assessment of the agents’ performance based
on the agent’s own judgments. To better evaluate that, in our
experiments, we implement three different types of agents, two
learning ones based on Deep Q-Learning - DQL [23] and on
on Proximal Policy Optimization - PPO [24], and a dummy
one which only select random actions. To guarantee that a
taken action by one agent is valid, we use the proposed Chef’s
Hat action selection greedy policy which limits each agents’
final action selection by applying a mask on the final Q-values
composed of only the currently allowed actions, given a certain
state.

As discussed by Barros et al. [20], the learning agents learn
different strategies when trained to play the Chef’s Hat game.



While the DQL agent learns a set of restricted actions, which
are mostly deployed by the end of the match, the PPO agent
usually has higher confidence in winning the game when using
a set of actions at the beginning of the match.

In this research, we are interested in establishing an expla-
nation on how each of these agents performs while playing
Chef’s Hat, so we do not focus or detail the agents’ learning
processes. To guarantee that each agent has its own strategies
when playing the game, we follow the baseline protocols
established by the vs Everyone self-play routine [20]. Figure
2 illustrates our implemented agents.

Fig. 2. The detailed implementation of the DQL and the PPO agents.

D. The Principles of Q-Learning

Both of our agents implement a Q-learning routine. The
general Q-learning algorithm learns to maximize the proba-
bility of choosing an action that leads to maximum reward.
For that, it calculates a Q-value (quality value) for each action
given a state and updates the policy, in our case represented by
a neural network, to maximize the expected reward. Using a
temporal-difference calculation, it can take into consideration
a sequence of steps that leads to the final state, represented by
finishing all cards in your hand. The maximal reward is given
once the player is the first one to reach the final state.

The typical Q-learning algorithm represents a function Q:

Q : SxA→ R (1)

where S is the state, in our case represented by the 28 values
composed by the 17 cards at hand and the 11 cards at the
board. The actions, A, are expressed using the 200 discrete
values for all the possible actions.

To update the Q-values, the algorithm uses the following
update function:

Q′(st ,at) = Q(s,a)+α× (T D) (2)

where t is the current step, α is a pre-defined learning rate
and T D is the temporal-difference function, calculated as:

T D = rt × γ×maxQ(st+1,at)−maxQ(st ,at) (3)

where rt is the obtained reward for the state (st ) and action
(at ) association, γ represents the discount factor, a modulator
that estimates the importance of the future rewards, and
maxQ(st+1,at) is the estimation of Q-value for the next state.

III. A Moody Framework

To evaluate the performance of the agents when playing
Chef’s Hat is not a simple task. At first, state-based evaluations
could give us a straight answer to performance measures, but
they do need external evaluation and they would be completely
biased on the evaluators’ knowledge about the game. Counting
the number of cards a player has at hand at a specific moment
can indicate a precise performance value, but it can vary
drastically depending on the players’ own strategy. The same
goes for measuring number of discarded cards in each turn.

Having a self-evaluation of the agents’ own performance,
thus, could solve this problem. As the action-selection strategy
of the agent is made based on its own knowledge, the agent
will be able to explain its own actions based on its own
judgment.

One of the simplest ways of explaining the action-selection
impact of a player is a Q-value-based observation. The Q-
value represents the impact that each of the 200 actions will
have, given a certain state, to reach the maximal goal. For
a given state, the agent calculates which action would give
it the highest probability of reaching the end state. The Q-
values reading, however, does not allow us to establish how
closely the agent is of winning the game by choosing that
action, and thus, does not give us a better understanding of
the agents’ performance, but only of which action was the
most appropriate given that specific state.

A. Calculating Confidence

To address the problem of calculating the impact of the se-
lected action towards reaching the final goal, the introspection-
based transformation of the Q-values [15] was proposed. This
approach focuses on scaling the selected Q-value towards the
final goal using a logarithm transformation which computes
the probability of success, that we use as a confidence (C),
that this specific action will lead the agent to reach the final
state:

C =

(
1
2
× log10

Q(s,a)
RT

)
(4)

where Q(s,a) is the Q-value of a selected action, and RT

is the maximum reward achieved by the agent at that specific
time step. To normalize the probability between the interval
[0,1], the probability is saturated and every value smaller than
0 is set to 0, and every value above 1 is set to 1.

The probability is calculated based on how well that Q-value
scales towards the maximum reward. In the Chef’s Hat game,
the agent only reaches the final reward if it wins a game. Also,
for each action which is not the final reward, the agent gets a
-0.01 reward in order to encourage the agent to prefer shorter
paths to the final reward [20]. This impacts directly on the final
reward calculation, as for each new turn the agent is playing,
the final reward changes. To take this into consideration, we
update the final reward per turn following:

RT = 1− (T ×0.01) (5)

where T represents the current turn on that specific game.



B. A Moody neural network

The observation of the Q-values on the Chef’s Hat scenario
already allowed for an understanding of how different learning
mechanisms impacted on the final performance of each agent
during a series of games [19]. Given the Chef’s Hat specific
greedy policy, however, each action that an agent selects is
limited by the possible actions given that specific state. There
is a strong limitation on the actions an agent can select, and
thus, it impacts directly on the Q-values obtained for that
specific state.

In a certain state, only a handful of possible actions are
allowed and the agent has to establish which of those actions
provide the best way to reach the maximum goal. This
translates to the agent having a very small Q-value per action,
as the allowed actions do not always comprise on the best ones.
We illustrate this behavior on the readings of Figure 3 (a). This
is especially impacted by the competitive characteristic of the
game. The agent’s next action will not be impacted only by
its own previous action, but by the combined impact of the
actions of its opponents.

Evaluating them alone in the Chef’s Hat competitive sce-
nario, thus, give us a very poor reading of the game context,
as it only represents how that specific action has the highest
probability, among all the allowed actions, to reach the final
state. It does not carry any information about how this action
was impacted by the previous ones. The same can be said by
the confidence values, as they are a direct transformation of the
Q-values. Although they can give us a clearer picture of how
that specific action is contributing to the agent reaching the
maximal goal, it will be extremely sensitive to the fast changes
of the competitive dynamics of the game, as illustrated in the
example plotted in Figure 3 (b).

To address that and in order to obtain a grounded rep-
resentation of the agent’s own internal state, we propose
the implementation of a Growing-When-Required Network
(GWR) [25] to generate prototypical representations of the
impact of the measured confidences. The GWR was used
recently to address personalization on emotion expression
perception [26], [27], and in several continuous learning tasks
[28], [29]. It is a self-organizing network that creates neurons
that represents a series of input data and it can be trained
online to approximate to the perceived stimuli.

Before feeding it to the GWR, we transform the calculated
confidences into a pleasure/arousal (PA) scale [21], which
represents a perceived experience two dimensions: pleas-
ing/unpleasing and excited/calm. The PA model has been used
as a standard way of representing intrinsic states in virtual
agents [30]–[32], and will allow an easy understanding our
Moody framework representations, and improve its applicabil-
ity in different scenarios.

Each neuron of the GWR has a weight vector w j that
represents a prototype of the perceived information. In our
scenario, we feed the GWR with perceived PA values. A newly
perceived PA value will be associated with a best-matching
unit (BMU) b, which is calculated by minimizing the distances
between the perceived PA value and all the neurons on the
GWR. Given a set of N neurons, b concerning the input x∈Rn

is computed as:

b = argmin
j∈N

(
‖x−w j‖2) . (6)

Fig. 3. Examples of the Q-values (a), confidence (b), and mood (c) readings
of the same agent on the same game. In the mood readings (c), each of the
dots represent a neuron of the network after an action was performed. As less
transparent the neuron, as higher its habituation counter, meaning it was used
recently to represent a perceived confidence.

When the BMU is found, new connections are created
between the BMU and the second-BMU. Every neuron that
is connected to the BMU is its topological neighbour. Each
neuron has an aging mechanism, represented by an habituation
counter hi ∈ [0,1], which represents how close this neuron was
to the BMU, and thus, how important it is for representing the
current input.

The habituation rule is given by:

∆hi = τi ·κ · (1−hi)− τi. (7)

where κ and τi are constants that control the decreasing
behavior of the habituation counter [25]. To establish whether
a neuron is habituated, its habituation counter hi must be
smaller than a given habituation threshold th.

The network is initialized with two neurons and, at each
learning iteration, it inserts a new neuron whenever the activity
of the network when a confidence c is calculated, of a
habituated neuron, is smaller than a given threshold ta, i.e.,
a new neuron is created if a(c)< ta and hc < th. The activity
of the network is given by:

a(c) = exp(−
(
‖x−w j‖2) (8)

For each perceived PA value, the network updates, in an
online manner, the state of the neurons by updating the BMUs
and their neighbors, or adding new neurons. Neurons that are
old, with a smaller habituation counter than a certain threshold,
are removed from the network. That guarantees a dynamic
behavior that represents the PA values as soon as they are
perceived, and although the model has not a direct temporal
processing mechanism, such as recurrent connections, we are
able to maintain a temporal relation on the perceived PA values
by adding neurons that represent PA values never perceived
before and removing neurons which represent PA values that
were not perceived anymore.

C. Assessing my own Mood
The goal of the Moody framework is to provide a self-

assessment, coming from the agent itself, about its own
actions. The GWR will generate a temporal momentum on
the confidences that will represent the agent’s performance
based on its own judgment. To achieve it, we calculate the Q-
values, and subsequently the confidences, of all the allowed
actions over a given state. We then sum all these confidences
and represent the agents’ confidence that it can reach the final
state, given the cards it has at hand and the board at that
moment. The last step is to convert the confidence value into
a PA scale. We then train the network with the PA values for
each action taken by the agent.



Different from the typical clustering applications, the GWR
on the Moody framework is a stateful model. We obtain the
mood reading by averaging all the weights of all the neurons
of the network at that specific state. As the neurons change
over the game, giving the agents’ own estimation, the mood
readings will increase or decrease depending on how that agent
perceives its own actions. Most importantly, the mood reading
will carry the temporal relations between the estimations. This
is observed by the example plotted in Figure 3 (c), where
we also observe the temporal behavior of the neurons been
inserted in the network to map the PA values. We clearly see
when a neuron with higher PA value starts to get more active,
and thus, has a smaller habituation.

The Chef’s Hat card game is made to be played in a
series of games. The roles assignments are given based on the
finishing position of the last game, and they change the general
games’ winning probabilities. When playing with completely
random agents, each agent has a chance of 25% of winning
the game. However, if this agent won the previous game and
it receives the Chef role in the current game, the chances
of winning the game increase to 35% [22]. To represent
the differences between the self-assessed confidence over an
action and the environment given feedback when finishing a
game, we calculate the PA values as follows:

P =

{C×0.5 i f action
1 i f victory
0 i f notVictory

(9)

A =


0.5− ((C−0.5)/0.25) i f action and C < 0.5
0.5+((C−0.5)/0.25) i f action and C ≥ 0.5

C1 i f victory
C0 i f victory

(10)
The pleasure (P) scale represents how pleased the agent

is given a certain event, and for every action the agent
takes, we correlate it directly to the confidence, reducing its
impact by 50%. The arousal scale impacts the agent’s own
perception of how excited it is when performing an action.
Again, to modulate the weight of the agents’ own confidence
in its actions, every action will give the agent value of 0.5
(neutral excitement) and will be modulated by the agent’s own
assessment. As closer as the confidence is of 1, as higher is the
excitement modulation that the agent perceives. The opposite
happens when confidence is less than 0.5. Obtaining a victory
at the end of the game should give the agent a clear pleasure
and arousal signal, and thus, have to be the strongest signal
that the agent receives.

The proposed different modulation for pleasure and arousal
presented here are to be taken as one perspective on how to
interpret the impact of the confidence. Different modulations
can be designed and derived, but it will not be the focus of
this paper. The use of the proposed modulation will not impact
our final considerations.

D. Assessing my Opponent’s Mood
The same way an agent can assess its mood, it can also

assess its opponents’ mood. This is important to give us a
complete information about the agent’s perception of the entire
competitive game, taking into consideration how it assesses
its actions, and how it assess the others’ actions. To achieve
the others’ assessment, we propose the use of an estimated

confidence (E-Confidence), which is calculated using a partial
estimation of the opponents’ hands.

To calculate its self-confidence, the agent uses the full game
state, composed of the cards it has at hand and the board. When
observing an opponent, the agent does not have access to the
opponent’s hand, only to the cards on the board. The agent can,
however, compose an estimated hand based on the amount of
cards the opponent already discarded and the current cards the
opponent played on the field. The estimated hand is composed
of 17 cards, and each of them is calculated as follows:

card =

{0 i f noCard
d i f discarded
r i f cardAtHand

(11)

where d represents the discarded cards by the opponent on
that round, if any, and r is a randomly chosen card, between
the face value interval [1,11]. To normalize the estimation,
we create 100 different combinations of (e−C). Knowing
which action the opponent took, the agent will calculate the
estimated confidence value for that specific action for the
100 combinations. This will give the agent an approximated
assessment of the opponent’s action, based on its judgment.

For each of the agent opponents, we create a single GWR
to represent an estimated mood. For each opponent’s action,
we create a specific e− PA, following the same procedure
demonstrated in Eq. 9 and 10, and train one specific GWR for
that opponent. The entire process provides each agent with its
own mood readings and the estimated mood readings of each
of its opponents. Figure 4 illustrates the entire processing flow
of the Moody framework , illustrating how the Player 1 obtains
its mood reading and the e-mood reading for one opponent.

IV. EXPERIMENTS

We perform two rounds of experiments in order to address
our two main research questions: 1) How the mood readings
provide the understanding of the agents’ behavior on the
Chef’s Hat game; 2) How close is the representation of the
mood estimated by an agent about its opponents from the real
mood of each of these opponents.

A. Mood vs Confidence
Our first experiment aims to demonstrate the capabilities

of the Moody framework to describe the performance of an
agent when making actions on the Chef’s Hat game. To do
so, we set up one game and put a DQL-based, a PPO-based
and 2 dummy agents to play against each other. We collect
the confidence and mood values for the DQL and PPO agents
and exhibit how they describe each other’s behavior during the
game. We also collect and exhibit the estimated confidence and
estimated mood that each of these two agents calculated about
each other. To illustrate further the capabilities of the mood,
we also exhibit the same measures for 10 games played in a
row.

B. Self vs Estimated
To evaluate how well an agent can estimate the perfor-

mance of another agent within the same game, we run 100
games where 2 DQL-based agents play against 2 PPO-based
agents. We calculate the correlation between the mood and
confidences and the estimated mood and confidences obtained
by each of the agents about themselves. Using two agents with
the same learning algorithm playing against each other will



Fig. 4. Illustration of how Player 1 (boxes with the red shade) obtains its own mood reading and the estimated mood reading of Player 2 (boxes with the
green shade). Player 1 calculates its own states (represented by the remaining cards at hand (in red), the cards on the board (in blue), and the empty card
slots (in gray)), estimates its Q-values and confidences, updates its mood and selects an action, so the board is updated. Player 1 estimates the state of Player
2 by using the cards in the board (blue dots), the discarded cards (green dots), and by estimating 100 combinations for each of the missing cards (light-green
dots). It calculates the Q-values for each of the e-states, and subsequently the e-confidences which are used to update the e-mood for Player 2.

Fig. 5. Confidence and mood of the DQL-based agent, and e-confidence and
e-mood estimated by PPO-based agent for 1 game won by the DQL-based
agent.

allow us to evaluate also the impact of the learned strategies
on how to play the game on the estimated values.

V. RESULTS AND DISCUSSIONS

A. Mood vs Confidence

The winner of the single match was the DQL agent. It won
after performing 26 actions. The confidence and mood of the
DQL-based agent are exhibited in Figure 5, together with the
estimation of the DQL confidences and mood obtained by
the PPO-based agent. It is easy to see the inherent behavior
enforced by the DQL algorithm on showing high confidence
on actions that happen by the end of the game, as explained in
the analysis made by Barros et al. [19]. Most importantly, we
observe that, in this game, the last action performed by DQL

was assessed as having strong confidence. The mood readings
map this behavior clearly, presenting a higher pleasure and
arousal reading by the end of the match, which is enhanced
by this agent winning the match.

The estimation made by PPO-based about the DQL-based
agent, at first, seems different from the estimations obtained
by DQL-based agent itself. However, once understanding how
the PPO agent learns to play the game, as explained in detail
by Barros et al. [19], the estimations seem to make more sense.
The PPO-based agent develops during training a strategy that
enforces it to have higher confidence in its actions at the
beginning of the game when compared to the end of the game.
That means the PPO-based agent evaluates the actions from
the DQL-based agent using its understanding of what good
actions are. And thus, presents a very particular version of
DQL-based agents’ confidence, disregarding the last action as
having a higher impact.

Doing the same observation on the plots about the PPO-
based agent, illustrated in Figure 6, we find the same behav-
ior. The DQL-based agent estimates the PPO-based agent’s
confidence based on its interpretation of what a good action
is, and thus, creates its version of the PPO-based agent
performance. In both cases, however, it is much easier to
understand the behavior of each of these agents during the
game by observing the mood readings. Even when observing
the estimated readings, we can clearly identify how well these
agents are doing in the game, and in which point it happened
a turnover that allowed the DQL-based agent to win the game,
at around action 25.

The advantages of using the mood readings to represent an
agents’ performance instead of the confidence values become
much clearer when we report the results of playing 10 games
in a row in Figure 7. By plotting the confidence readings over
all these matches, the lack of temporal momentum in-between
the actions and games is clearly evident. When observing the
mood, however, we can clearly identify when the DQL-based
agent is performing well, and win the matches mostly in the



Fig. 6. Confidence and mood of the PPO-based agent, and e-confidence and
e-mood estimated by the DQL-based agent for 1 game won by the DQL-based
agent.

Fig. 7. Confidence and mood of the DQL-based agent and the PPO-based
for 10 games, 3 of them won by the DQL-based agent and 7 won by the
PPO-based agent.

beginning of the games, while the PPO-based agent has a
winning streak by the end of the 10 games.

B. Self vs Estimated
In order to give each agent its own closed-world observation

of the entire Chef’s Hat game, it is extremely important that
the estimated readings are somehow trustworthy. Of course,
given that each agent learns to derive playing strategies dif-
ferently [19], it is clear that their assessment of each other’s
actions are different. Calculating the correlation of the mood
readings and confidence values after running 100 games with
two pairs of incarnations of agents that follow the same
strategy allow us to validate the agents’ estimations. Table
I reports all the calculated correlations.

When the same types of agents are estimating themselves,
DQL1 and DQL2, and PPO1 and PPO2, it is clear that there
is a strong correlation between the estimations. The mood
estimation, however, presents a general higher correlation than

TABLE I
CORRELATIONS BETWEEN ESTIMATED CONFIDENCE AND MOOD

READINGS (AVERAGED BETWEEN PLEASURE AND AROUSAL) AND
SELF-ASSESED CONFIDENCE AND MOOD FOR 100 GAMES PLAYED BY TWO

DQL-BASED AGENTS VS TWO PPO-BASED AGENTS.

Estimated Confidence
From

Target DQL1 DQL2 PPO1 PPO2
DQL1 1 0.86 0.09 0.09
DQL2 0.77 1 0.12 0.11
PPO1 0.12 0.12 1 0.86
PPO2 0.04 0.04 0.86 1

Estimated Mood
From

Target DQL1 DQL2 PPO1 PPO2
DQL1 1 0.84 0.12 0.16
DQL2 0.88 1 0.24 0.13
PPO1 0.24 0.19 1 0.89
PPO2 0.10 0.08 0.92 1

confidence. This happens because of the temporal correlation
that happens on the GWR training. Due to the noise in the
estimations, in particular at the beginning of the match - as
there are many more cards to be estimated - the confidence val-
ues can show many different readings. The prototype neurons
of the GWR smooth these differences by approximating the
inputs towards a single BMU representation, which guarantees
a much closer estimation.

Although the different learning algorithms have a different
assessment of each others’ actions, which is clearly observed
by the lower correlations between DQL-based and PPO-
based agents, they show a general correlation trend. Here,
the mood also provided a higher correlation, mostly due to
the same reason: the GWR approximates the correlation, and
independently of the learning algorithm, it is easier to track
the general performance of the agent.

C. Why the Estimations matter?
When analyzing the mood and estimated moods of a single

agent, we are able to have an insight into how each of
the agents is performing during one game, at an action-
selection time. This is clearly demonstrated when visualizing
the estimations of DQL-based and PPO-based agents about
the dummy agents when playing the single game of the Self
vs Estimated experiment, illustrated in Figure 8. It is possible
to understand the random behavior, and how it does not
contribute at all for winning the game, from both DQL-based
and PPO-based agents’ perspectives.

Giving to each agent the capability of measuring not only
the impact of its own actions but also the estimation of other
agents’ actions, allows them to have a complete understanding
of the game scenario. This gives the agent an important
tool that, although not explored in this work, would allow
them to interpret any other agents’ actions and take this into
consideration when performing their own.

VI. CONCLUSIONS

In this paper, we introduced the novel Moody framework
which is able to explain the behavior of reinforcement learning
agents in a competitive multiplayer card game scenario based
on the players’ assessment of its own performance.

The model is represented in a pleasure and arousal (PA)
scale and builds on the introspective confidence [15] repre-
sentation of the Q-values selection. It implements a Growing-



Fig. 8. Mood estimation of the DQL and PPO agents when playing one game
against two dummy agents.

When-Required (GWR) network to establish a temporal im-
pact between the assessment of the taken actions. Also, the
model allows each agent to measure their opponents’ actions
based on their own assessing, endowing them with a closed-
world representation of the entire game. We demonstrate how
the Moody framework provides a much more enriching ex-
planation of the agents’ performance while playing the Chef’s
Hat card game than the introspection-based confidences. Also,
in our experiments, we quantify how well an agent can assess
others’ actions based on their own judgment.

In general, we see this work as the basis for the im-
plementation of intrinsic-aware agents towards competitive
reinforcement learning scenarios. We envision the integration
of the mood readings towards an action-selection process in
order to modulate the agents’ performance based on its own
understanding of how well its opponents are performing. Also,
we will investigate in the future the integration of intrinsic
personality traits in the agents’ mood, in order to model unique
social relations.
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