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Abstract—Recently robots are being used more frequently as
assistants in domestic scenarios. In this context we train an
apprentice robot to perform a cleaning task using interactive
reinforcement learning since it has been shown to be an ef-
ficient learning approach benefiting from human expertise for
performing domestic tasks. The robotic agent obtains interactive
feedback via a speech recognition system which is tested to
work with five different microphones concerning their polar
patterns and distance to the teacher to recognize sentences
in different instruction classes. Moreover, the reinforcement
learning approach uses situated affordances to allow the robot
to complete the cleaning task in every episode anticipating when
chosen actions are possible to be performed. Situated affordances
and interaction allow to improve the convergence speed of
reinforcement learning, and the results also show that the system
is robust against wrong instructions that result from errors of
the speech recognition system.

I. INTRODUCTION

The field of robotics has shown considerable progress in

the last years allowing robots to be present in diverse scenar-

ios, from industrial environments where they are nowadays

established to domestic environments where their presence

is still limited [1]. In this paper we propose a domestic

scenario where a robot has to perform a task which consists

of cleaning a table assisted by a minimal degree of external

guidance. A robot working in a domestic scenario can benefit

from human expertise on how to perform a particular task

[8] [9] [10]. Therefore, in our scenario the robot receives

spoken advice from a human trainer which is recognized by

an automatic speech recognition (ASR) system. This way of

giving instructions is natural for humans, but we need to

control the probability of supplying feedback by the teacher,

as humans can decide if they provide an instruction in a given

situation. Hence, we use an artificial agent with full knowledge

about the task to provide the spoken advice.

In neural networks there are mainly three different learning

paradigms, which are supervised, unsupervised and reinforce-

ment learning [2]. In our scenario the robot has no previous

knowledge on how to perform the task and it needs to

explore its environment. Therefore the apprenticeship process

is carried out with reinforcement learning (RL).

RL is a learning approach supported by behavioral psychol-

ogy where an agent interacts with its environment trying to

find an optimal policy to perform a particular task. In every

time step, the agent performs an action reaching a new state

Fig. 1. System architecture in three levels. At the top is the interface module
which interacts with the external teacher, in the middle is the control module
and at the bottom the robot module where the actions are performed.

and obtains either a reward or a punishment. The agent tries

to maximize the obtained reward by choosing the best action

in a given state [3].

One RL problem that still remains open is the time spent

by an RL agent during learning. It often requires excessive

time to find a proper policy [4], mainly due to the large

and complex state action space which leads to excessive

computational costs. In this work, besides external guidance,

we use situated affordances which are a generalization of the

affordance concept [6] which lately has been used successfully

in robotics [7]. Situated affordances are implemented by a deep

multilayer perceptron allowing us to estimate either the robot’s

next state or if the affordance is temporally unavailable.

Therefore, the following work presents an integrated system
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to teach a robot to perform a domestic cleaning task using an

external trainer with occasional spoken instructional feedback.

The system architecture consists of three modules which are

shown in Figure 1. At the top there is the interface module

where the external trainer provides a voice stream which is

processed by the ASR system and sent to the control module

in the middle. The control module runs the learning algorithm

that is able to perform autonomous RL and IRL generating

choices for actions. These are passed to the robot module to be

executed by a simulated Baxter robot in the V-REP simulator

[11] combining two different approaches for low level control,

namely direct planning and inverse kinematics.

II. REINFORCEMENT LEARNING AND INTERACTIVE

GUIDANCE

A prominent strategy to improve the speed of convergence

in RL is to use external trainers to provide guidance in specific

states during the learning process. Early research on this topic

can be found in [12] where the author shows that external

guidance plays an important role in learning tasks performed

by both humans and robots by decreasing the time needed

for learning. Furthermore, in large spaces where a complete

search through the whole search space is unfeasible, the trainer

may lead the apprentice to explore more prominent areas at

early stages. Additionally, trainers may also help the learner

to avoid getting stuck in local maxima.

So far, diverse strategies have been presented to provide

guidance in RL, such as learning by imitation [13], demonstra-

tion [14] [15] [16], and feedback [17] [18] [19]. In particular in

learning by feedback two main approaches are distinguished:

reward and policy shaping. Whereas in reward shaping an

external trainer is able to evaluate how good or bad the

performed actions by the RL agent are [18] [20], in policy

shaping the action proposed by the RL agent can be replaced

by a more suitable action chosen by the external trainer before

it is executed [17]. In both cases, an external trainer gives

interactive feedback to the apprentice agent to encourage it to

perform certain actions in certain states to reach either a better

policy or a faster performance.

In this work, we use policy shaping through action selection

guidance which means that the action to perform may be given

by an external trainer that has prior knowledge about the task

(see figure 2). Diverse information sources can be employed

to obtain feedback from, for instance, a person, another robot,

or an simulated agent.

In our human-robot scenario it is desired to keep the rate of

interaction with an external trainer as low as possible; other-

wise reinforcement learning converts into supervised learning.

Also, the consistency or quality of the feedback should be

considered to determine whether learning is still improving

given that the external teacher could also make mistakes [21].

We presented in [22] a method which allows to improve

the speed of convergence of an RL agent using affordances

and interaction. Affordances limit the number of possible

actions in some states and can reduce the computational

complexity of RL. The interactive feedback was provided

Fig. 2. Our approach to interaction between a robotic agent and an external
trainer by feedback. In this case, the external trainer is able to change a
selected action to be performed in the environment.

by an artificial agent acting as an external trainer instead

of a human. This agent had previously learned the task and

it had to provide feedback with a probability of 30%. The

results show a reduction in the number of required episodes

during the training as well as a reduction in the number of

actions performed in each episode. However, in our previous

work, affordances were given as prior knowledge and were

not learned automatically.

III. CONTEXTUAL AFFORDANCES

Affordances are often seen as opportunities for action of

an agent (a person, an animal, a robot, or an organism). The

original concept comes from ecological psychology and was

proposed by Gibson [6]. For instance, a glass and a bed

afford different actions to a person who is able to grasp the

glass and lie down on the bed, but cannot do it the other

way around. Thus, an agent is able to determine some object

affordances beforehand and the caused effect after a specific

action is performed with an object. In Gibson’s book many

diverse examples are given but no concrete, formal definition

is provided.

Even nowadays, we find marked differences among ecolog-

ical psychologists about the formal definition of affordances

[23] and these discrepancies could even be stronger between

them and AI scientists [24] [25]. In the following subsections

we propose a formal computational definition based on the

original concept of Gibson and then an extension considering

an additional context variable.

A. Affordances

Affordances have been particularly useful to establish rela-

tionships between actions performed by an agent with avail-

able objects. We use them in a way to represent object/action

information. They represent neither agent nor object character-

istics, but rather the characteristics of the relationship between

them. In [26] an affordance is defined as the relationship

between an object, an action, and an effect as the triplet:

Affordance = (Object, Action, Effect) (1)

Figure 3 shows the relationship between the previous compo-

nents, where objects are entities which the agent is able to
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Fig. 3. Affordances as relations between objects, actions, and effects. Objects
are entities which the agent is able to interact with, actions represent the
behavior that can be performed with the objects, and the effects are the results
caused by applying an action [26].

Fig. 4. The book affords grasping as long as the agent’s current state allows
this action to be performed. In the shown scenario it is not feasible to use
that affordance since both hands are already occupied, but once one hand is
free the affordance can be used again.

interact with, actions represent the behavior or motor skills

that can be performed with the objects, and the effects are the

results of an action involving an object [24] [27].

It is also important to note that the object in equation 1

can also be a place or a location, for instance, a hill affords

climbing. From here onwards, we employ the term object

to refer to the affordance component but we consider also

locations.

B. Situated Affordances

If an affordance exists and the agent has knowledge and

awareness of it, the actual, next step is to determine if it is

possible to utilize it considering the agent’s current state. For

instance, let us consider the following scenario: a cup affords

grasping, as does a book, but in case we have an agent with

both hands occupied (e.g. with one cup in each hand) then

the agent cannot grasp the book anymore or in other words,

the affordance is temporarily unavailable. This situation is

depicted in figure 4. This does not mean that the affordance

does not exist, but to the contrary, the affordance is still present

but cannot be used by the agent in that particular situation due

to its current state.

Kammer et al. [32] proposed to consider the dynamics in

the environment in which the object was embedded rather than

Fig. 5. Situated affordances as relations between state, objects, actions, and
effects. In this case the state is the agent’s current condition. According to
this state a different effect could be produced in different occasions.

the agent’s dynamic state. The awareness of this extra variable

is called situated affordances. Even though a formal definition

was provided, neither applications nor results are shown in this

work. Nevertheless, we use the same concept to address the

problem when the agent’s state is dynamic. Thus, we propose

a model where the current state of an agent is also considered

for the effects of an action performed with an object. The

following quartet shows this model:

Situated Affordance = (State, Object, Action, Effect) (2)

For instance, given two affordances utilizing the same action

a and the same object o, but from a different agent’s state

s1 6= s2. When action a is performed different effects e1 6= e2
are generated and it is unfeasible to establish differences

between these affordances, i.e. e1 = (a, o) and e2 = (a, o).
Hence, to deal with the current states s1 6= s2, an agent

distinguishes each case and learns them at the same time since

each situated affordance would be defined by e1 = (s1, a, o)
and e2 = (s2, a, o) establishing clear differences between them

with enough information [32].

Figure 5 shows the relationship between object, action,

effect, and the agent’s current state. This model allows us

to determine beforehand when it is possible to apply an

affordance using an artificial neural network (ANN) to learn

the relationship with the state, the action, and the object as

inputs and the effect as output. In chapter VI we will describe

in detail the neural network architecture used to anticipate the

effect.

IV. CLEANING SCENARIO

A detailed domestic scenario has been defined [22] on a

table cleaning task. To achieve this task we have defined

objects, locations, and actions. The task includes a robot

standing in front of a table which should be cleaned with a

sponge. The table is divided into two zones to be cleaned. In

one of these zones a cup is placed which has to be moved

during the task execution to complete it successfully. A third

location called home is also considered to refer to the initial

arm position as well as the place where the sponge is kept.

We have defined four actions: get an object, drop an object, go

to a location, and clean which cleans the table portion where
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TABLE I
LIST OF DEFINED OBJECTS, LOCATIONS AND ACTIONS FOR

CLEANING-TABLE SCENARIO.

Objects Locations Actions

sponge left get <object>

cup right drop <object>

home go <location>

clean

the robot arm is currently placed. Table I shows a summary

of available objects, locations, and actions.

The defined cleaning scenario has 46 states; each one is

obtained considering the following four variables:

i. the robot’s hand position,

ii. the object held in the hand, or free,

iii. the position of the cup,

iv. the current condition of the two locations.

Given the defined actions, objects and locations, we are able

to set the presence of four different situated affordances which

allow us to determine if objects are graspable, droppable,

movable, or cleanable according to the robot’s current state.

To make the scenario more complex, we created variations

for every combination of action and object/location, expanding

it to 33 domain-specific instructions belonging to 8 differ-

ent classes. For instance, the instruction get the sponge

could also be stated as pick up the sponge, take the

sponge, grasp the sponge, or lift the sponge,

but all of them belong to the same class.

The table cleaning task is carried out by a Baxter robot

in a simulated environment using the V-REP simulator [11].

All actions are performed using only one arm which has

seven degrees of freedom (DoF). Figure 6 shows the scenario

while the Baxter robot is cleaning the table using the sponge.

The Baxter robot has as end effector a vacuum cup, also

called suction pad. We did not employ a gripper to grasp

the object since the main focus in this work was to learn

the right sequence quickly. Moreover, to reach the defined

locations direct planning was used and then afterwards inverse

kinematics for low-level control was used to grab objects.

V. AUTOMATIC SPEECH RECOGNITION

The given scenario originates from the Human-Robot In-

teraction (HRI) domain. For this reason, we do not only

employ a humanoid robot as the learner, but there is also a

humanoid teacher. Since the human way of instructing a robot

is employing speech, the teacher also uses speech to instruct

the learning robot by providing pre-recorded audio data that

was spoken by a human. To understand the verbal commands,

the apprentice processes audio data and recognizes the given

guidance by applying an ASR system.

The ASR system we employ for our approach is based

on Google Voice Search [28] which is a cloud-based ASR

service processing audio data captured by a local microphone

and generating hypotheses for the corresponding text repre-

sentation. Google Voice Search utilizes well-trained acoustic

Fig. 6. A simulated Baxter robot performs the actions in the environment
which is created in the V-REP simulator. The cleaning scenario consists of
three locations, two objects, and four actions.

models based on large amounts of audio data collected [29].

As Google Voice Search is generally applied in web searches,

the involved language models are optimized for this task. The

given HRI scenario differs from this field as robot instructions

are verbalized which are not the first preference in web search-

based ASR hypotheses. A possibility to overcome this issue

is to integrate a local open-source ASR system which can

be configured by providing a domain-specific language model

for the given HRI scenario. However, the acoustic models

employed by local open-source ASR systems provide a lower

quality due to the lower amount of training data available

during training.

To overcome the issues of either weak acoustic models

or out-of-domain language models we developed a post-

processing technique to fit the ASR hypotheses provided by

Google Voice Search to the given HRI domain. To be able

to exploit the quality of the well-trained acoustic models

employed by Google Voice Search, the ASR hypothesis is

converted to a phonemic representation employing the Se-

quiturG2P grapheme-to-phoneme (G2P) converter [30] trained

on the CMUdict 0.7a1 dictionary which contains words and

their corresponding phoneme sequence representation. The

G2P converter is capable of creating a phoneme sequence for

unknown words based on the provided training data and so

overcomes the issue of unknown words contained in the ASR

hypothesis provided by Google Voice Search.

For the given HRI scenario, a fixed set of robot commands

is defined and represented by a list of sentences. To receive

the best-matching hypothesis out of the list of sentences, the

phonemic representation of the ASR hypothesis is compared

to the phonemic representations of each sentence in the list.

For this task, the Levenshtein distance [31] is employed to

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Fig. 7. Functional principle of the ASR system. The left side shows the
ASR hypotheses provided by Google and the right side contains the list of
sentences for the given HRI scenario. In the middle, the Levenshtein distances
are calculated.

calculate the difference between phoneme sequences. After

calculating the Levenshtein distance between the ASR hypoth-

esis and each sentence of the list, the sentence possessing the

shortest distance is chosen as the best matching result. To

improve the technique, the Levenshtein distance is calculated

for the ten best hypotheses provided by Google Voice Search.

Figure 7 summarizes the mentioned functional principle.

VI. PROPOSED MODEL

A general overview of the system architecture is shown in

figure 1. This section describes the proposed model consid-

ering aspects such as our IRL approach and how situated

affordances are implemented with an ANN architecture to

estimate the robot’s next state.

A. Interactive Reinforcement Learning Approach

Since RL is used, most of the time the robot performs

actions autonomously by exploring the environment, but when

guidance is delivered this is sent to the robot via speech

recognition. Hence the robot takes advantage of this advice

in selected time steps during a learning episode and performs

the suggested actions to complete the task in shorter time by

performing fewer actions.

In the learning module we allow the robot to perform actions

considering transitions from state-action pair to state-action

pair rather than transitions from state to state only. Therefore,

we implement the on-policy method SARSA [33] to update

every state-action value according to equation 3:

Q(st, at) ← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−

Q(st, at)] (3)

where st and st+1 are the current and next state respectively,

at and at+1 are the current and next action, Q is the value of

the action-state pair, rt+1 the obtained reward, α is the learning

rate and γ the discount factor. The reward function delivers a

positive reward of 1 to the agent every time it reaches the final

state, otherwise it delivers a reward of 0. Equation 4 shows

the reward function defined:

r(s) =

{

1 if s is the final state

0 otherwise
(4)

Furthermore, we use the ǫ-greedy method for action se-

lection with the following parameters α = 0.3, γ = 0.9,

and ǫ = 0.2. Therefore, most of the time the next action is

determined as shown in equation 5:

at+1 = argmax
a∈as

Q(st, a) (5)

where st is the current state at time t, and as corresponds

to a subset of all available actions. The subset of actions is

determined based on the situated affordances (see equation

2 and/or figure 5). This way, it is possible to anticipate

whether the action is performable with an object in a particular

state which is called effect. This neural architecture will be

explained in the next subsection.

Our external trainer consisted of an artificial agent that had

full knowledge about the task. Therefore it was able to deliver

selected interactive feedback to the robot using ASR at certain

times during the learning process. We used the advise method

defined in [21] with probability of feedback L = 0.2 and

consistency of feedback C = 0.9 as interaction parameters.

B. Situated Affordances with Deep Neural Architecture

It has been shown that a multilayer feedforward neural

network (MLP) with only one hidden layer and a sufficient

number of neurons in this layer is able to approximate any

continuous non-linear function with arbitrary precision [34]

[35] [36]. Nevertheless, MLPs with only one hidden layer

may need an exponential number of neurons in order to reach

a particular degree of precision [37]. Besides that, in the last

years deep neural architectures have become a topic of interest

within the research community due to their distributed and

sparse representation which allows to tackle problems in a

similar fashion as the human brain does [38].

Therefore, to learn the relationship between inputs and

outputs in situated affordances we implement a deep multilayer

perceptron (DMLP) which is a feedforward network with more

than one hidden layer as proposed in [39]. As inputs we use

the agent’s current state, the action, and the object giving a

code number to every state and every action plus object, the

two latter together; as output we use the next state or −1 to

indicate that it is not feasible to perform the action with the

object in the current state.

Training data were obtained considering all possible states

mentioned in section IV as well as the instructive classes

taking into account the combination of actions and ob-

jects/locations. This led to 368 data for the training process.

The final architecture consists of 46 neurons in the first

hidden layer and 8 neurons in the second one. Both hidden

layers have sigmoid transfer functions and the output layer has

one neuron with a linear transfer function, as shown in figure

8. The number of neurons selected in every hidden layer is

empirically determined related to our scenario.
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Fig. 8. Deep multilayer perceptron used to determine situated affordances.
Hidden layers used sigmoid transfer functions and the output layer used a
linear transfer function.

(a) Snowflake (b) UB1 (c) Digital

(d) Headset (e) Pro1 (f) Pro1(Details)

Fig. 9. Microphones used in the experiments

A general problem during the training process of a deep

neural network is the vanishing gradient. For first order

gradient-based methods a second problem of getting stuck can

arise due to the error surface possessing large plateaux [40]. To

overcome these issues, we use Nguyen-Widrow weight initial-

ization [41] and the second order training method Levenberg-

Marquardt due to better performance shown in [42].

Algorithm 1 shows the IRL approach using situated affor-

dances, interaction and speech recognition. The conditional

statement starting in line 19 represents the fact that the external

teacher delivers advice and changes the next action at+1 by

formulating a verbal instruction that is processed by the ASR

system. Conditions in lines 8 and 18 represent the response

of the neural network about the feasibility of performing the

action in the current state which is called situated affordance

(SA in the algorithm).

Algorithm 1 Interactive reinforcement learning approach us-

ing situated affordances, interaction and speech recognition

Require: Previous definition of states and actions

1: Initialize Q(s, a) arbitrarily

2: repeat

3: if rand(0, 1) <= ǫ then

4: Choose at randomly from A

5: else

6: Choose at according to a = argmax
a=as

Q(s, a)

7: end if

8: until SA(at, o, st) <> −1
9: repeat

10: Take action at
11: Observe reward rt+1 and next state st+1

12: repeat

13: if rand(0, 1) <= ǫ then

14: Choose at+1 randomly from A

15: else

16: Choose at+1 according to a = argmax
a=as

Q(s, a)

17: end if

18: until SA(at+1, o, st+1) <> −1
19: if rand(0, 1) <= feedbackProbability and ................

... rand(0, 1) <= consistencyProbability then

20: get advice from teacher voice using ASR

21: if SA(at+1, o, st+1) <> −1 then

22: at+1 ← advice

23: end if

24: end if

25: Q(st, at) ← Q(st, at) + α[rt+1 + γQ(st+1, at+1) −
Q(st, at)]

26: st ← st+1

27: at ← at+1

28: until s is terminal

VII. EXPERIMENTAL RESULTS AND DISCUSSION

To carry out the table cleaning task we consider different

microphones to measure how the hardware affects quality in

the ASR system and consequentially in the IRL approach.

Therefore, we made simultaneous recordings using 5 different

kinds of microphones and evaluated the answers of our ASR

system. Afterwards, we made the scenario more difficult by

positioning the microphones in a distance of 1m away from the

speaker, which leads to the necessity of increasing the strength

of the audio signal to compensate for the lower volume of

the speech instructions and with this also increasing the level

of environmental noise contained in the audio signal. As a

hypothesis, we claim that more noisy audio data leads to

worse ASR performance and so we can measure the robustness

of the learning system by providing incorrect instructions.

The microphones were Snowflake, UB1, Digital, Headset and

Pro1 which are shown in figure 9. Snowflake’s polar pattern

is cardioid, UB1 is omnidirectional, Digital is supercardioid,

Headset is unidirectional, and the Pro1 is omnidirectional.

Only 16kHz, mono channel audio data was utilized.
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Fig. 10. Response of the ASR system to the list of sentences using different
microphones at normal and at 1m distance. WER and SER are shown as
percentages.

TABLE II
WORD AND SENTENCE ERROR RATE (%) IN ASR FOR ALL MICROPHONES

USED AT NORMAL AND AT 1M DISTANCE.

Microphone
Normal distance 1m distance

WER SER WER 1m SER 1m

Snowflake 0 0 0.877 3.03

UB1 0 0 1.754 6.061

Digital 0.877 3.03 1.754 6.061

Headset 0.877 3.03 3.509 12.121

Pro1 11.404 27.273 14.912 30.303

The response of the ASR module for the domain-specific

language model measured in Word Error Rate (WER) and

Sentence Error Rate (SER) is shown in figure 10 and in table

II as percentages for normal distance and 1m distance. In this

context, normal distance means that the microphone is placed

in its normal working position depending on its characteristics.

The SER depends on the sentence accuracy SAcc as shown in

the following equation:

SER = 1− SAcc (6)

We observed that the microphone with the best results working

with and without noise is Snowflake and the microphone with

the worst result in both cases is Pro1.

To test the learning module three different set-ups were

implemented: first the robot working autonomously, second

the robot working with advice taken from the Pro1 micro-

phone, and third the robot working with advice taken from

the Snowflake microphone. The two latest set-ups were run

with the best and the worst microphone performances in the

domain-specific language model with the aim of testing how

influential the quality of the microphone was in improving the

speed of convergence in IRL. In both cases, microphones at a

distance of 1m away from the teacher were used.

Each set-up was carried out 100 times and the results were

averaged. Figure 11 shows the average number of actions

performed during 100 episodes. The y axis is truncated at

200 actions to highlight the difference between the set-ups. In

each episode, the cleaning task was always finished because

of situated affordances which allowed to avoid performing
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m
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IRL Pro1
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 α = 0.3, γ = 0.9, ǫ = 0.2, L = 0.2, C = 0.9

Fig. 11. Average number of actions performed to finish the task using an
RL agent (blue) and an IRL agent with two different microphones (red and
green). Despite of the differences in the hardware quality, the IRL approaches
show improvement compared to the RL approach.

actions that, according to the robot’s current state, were not

feasible.

In figure 11, we show that both IRL approaches perform

better than RL working autonomously, but there is no sig-

nificant difference between IRL with Pro1 and Snowflake

microphones. To analyse this, we defined the actual interactive

feedback rate (I) which is the percentage of steps where a

correct instruction was properly received by the agent:

I = L ∗ C ∗ SAcc (7)

We computed I from the feedback probability (L = 0.2),

consistency probability (C = 0.9), and the SAcc. Given

SER ∈ [3.03%, 30.303%] the results were I = 12.55% for

Pro1 and I = 17.45% for Snowflake. These small values are

already large enough for the agent to benefit from interaction.

This is consistent with a recent study where it is shown that

large improvements of RL by IRL are already achieved at low

interaction rates [43]. In fact, it is possible to observe in figure

11 that there is a small variation in the first ten episodes but in

the following episodes variations get even smaller. This leads

to a system which is able to perform the task properly and

which is robust for a variety of audio hardware.

VIII. CONCLUSIONS AND FUTURE WORK

We have shown ASR to be an effective method to work

in IRL scenarios to improve the speed of convergence of RL

agents. For scenarios where a human would verbally instruct a

robot during IRL, our results indicate that interaction helps to

increase the learning speed robustly even with an impoverished

ASR system. Moreover, situated affordances allowed the agent

to complete the RL task in every episode efficiently.

As future work, we will consider an architecture with

free speech recognition which would allow us to move our
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domestic-cleaning scenario to work with human external train-

ers as well as a humanoid robot to perform the actions.
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