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1. Motivation 3. What Makes a Good Teacher

CENTRAL

e Interactive reinforcement learning (IRL) has become an important e Agents with diverse behaviors: specialist-A, specialist-B, and
apprenticeship approach to speed up convergence in classic rein- polymath agent.
forcement learning (RL) problem:s. e Lower standard deviation in polymath agent 7% = argmin .

e We study etfects of agent-agent interaction in terms of achieved e Different internal representation of Q-values.

learning when parent-like teachers differ in essence and when

learner-agents vary in the way they incorporate the advice. 5 5 5 3
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e Each robot state is represented by four variables:

0.0 ’ 0.0

sy =< handPos, handObj, cupPos, sideCond|| > (1)

e Transition function:
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Table 1. State vector transitions. After performing an action the agent reaches
either a new state or a failed condition, if the latter, the agent starts another
training episode from the initial state sp.

200 30
Episodes Episodes Episodes

feedback = 0.5, consistency = 0.5 feedback = 0.75, consistency = 0.5 feedback = 1.0, consistency = 0.5

Action State vector update . o5

Get if handPos = home && handObj = cup then FAILED
if handPos = cupPos && handObj = sponge then FAILED
if handPos = home then handObj = sponge
if handPos = cupPos then handObj = cup

Drop if handPos = home && handObj = cup then FAILED
if handPos ! = home && handObj = sponge then FAILED
otherwise handObj = free
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Go < F.IDSZ':-“E handPos = pos Episodes Episodes Episodes
if handObj = cup then cupPos = pos | | ,
feedback = 0.5, consistency = 0.75 feedback = 0.75, consistency = 0.75 feedback = 1.0, consistency = 0.75
Clean if handPos = cupPos then FAILED ” ' = o

if handPos = home then FAILED
if handObj = sponge then sideCond[handPos] = clean

Abort handPos = home
handObj = free
cupPos = random(pos)
sideCond = [dirty]*|pos]
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* < pos = may be any defined location, therefore three actions are represented by this By
transition, i.e. go left, go right, and go home. o i = - i il = e G e - -

feedback = 0.5, consistency = 1.0 feedback = 0.75, consistency = 1.0 feedback = 1.0, consistency = 1.0

e Summarized state machine: ,
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ght dirty 4. Conclusions
: Path B
6 i \ e Interactive feedback provides advantages over RL, but parent-
1 state . . . .
left side Cleaning like trainers need to give good feedback.
ight sid : ' '
;efthclzan/ o FL{_efth Elelan/ e Agents collecting more reward are not necessarily good train-
ight dirt ight clean ° istributi
7 ’ ers. Agents with better distribution of knowledge are preferred
) candidates.
\ 26 states 4 states J e Polymath trainer-agent properly advises in more situations.
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