

Internal knowledge representation on trainer agents by using interactive reinforcement learning

Francisco Cruz Escuela de Computación e Informática Universidad Central de Chile Email: francisco.cruz@ucentral.cl

1. Motivation

- Interactive reinforcement learning (IRL) has become an important apprenticeship approach to speed up convergence in classic reinforcement learning (RL) problems.
- We study effects of agent-agent interaction in terms of achieved learning when parent-like teachers differ in essence and when learner-agents vary in the way they incorporate the advice.

3. What Makes a Good Teacher

- Agents with diverse behaviors: specialist-A, specialist-B, and polymath agent.
- Lower standard deviation in polymath agent $T^* = \operatorname{argmin} \sigma_s^i$.
- Different internal representation of Q-values.

Parent-like agent trainer Agent in state s

Environment

(1)

2. Robotic Scenario

• In a reinforcement learning scenario, a robot learns how to clean a table. We define *objects*, *locations*, and *actions* as follows:

Objects	Locations
sponge	left
goblet	right
	home
Actions	
go <location></location>	
get	drop
clean	abort

- Each robot state is represented by four variables: $s_t = \langle handPos, handObj, cupPos, sideCond[] \rangle$
- Transition function:

Table 1. State vector transitions. After performing an action the agent reaches either a new state or a failed condition, if the latter, the agent starts another training episode from the initial state s_0 .

Action	State vector update
Get	<pre>if handPos = home && handObj = cup then FAILED if handPos = cupPos && handObj = sponge then FAILED if handPos = home then handObj = sponge if handPos = cupPos then handObj = cup</pre>
Drop	<pre>if handPos = home && handObj = cup then FAILED if handPos! = home && handObj = sponge then FAILED otherwise handObj = free</pre>
Go < pos>*	handPos = pos if handObj = <i>cup</i> then cupPos = pos
Clean	<pre>if handPos = cupPos then FAILED if handPos = home then FAILED if handObj = sponge then sideCond[handPos] = clean</pre>
Abort	handPos = <i>home</i> handObj = <i>free</i> cupPos = random(pos) sideCond = [dirty]* pos

* < pos > may be any defined location, therefore three actions are represented by this transition, i.e. go left, go right, and go home.

• Summarized state machine:

- RL - obedience = 0.0 - obedience = 0.25 - obedience = 0.5 - obedience = 0.75 - obedience = 1.0

4. Conclusions

- Interactive feedback provides advantages over RL, but parentlike trainers need to give good feedback.
- Agents collecting more reward are not necessarily good trainers. Agents with better distribution of knowledge are preferred candidates.
- Polymath trainer-agent properly advises in more situations.

Reference

Francisco Cruz, Sven Magg, Yukie Nagai, and Stefan Wermter. "Improving interactive reinforcement learning: What makes a good teacher?". Journal Connection Science, Vol. 30, Nr. 3, pp. 306-325, March 2018. Open Access.

