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Abstract- The cerebral autoregulation system (CAS), is a 
mechanism which aims to regulate pressure variations occurring 
in the cerebral circulatory system. At present, there only exist 
invasive methods and, in turn, they are not used to prevent 
cerebrovascular accidents. Nowadays, the emergent concept of 
m-Health allows to use mobile devices to assist the cerebral 
autoregulation index (ARI). For this, it is necessary to find novel 
models which allow to approximate the ARI by using the blood 
pressure value. This work proposes a gray-box neural model to 
find a relation between the arterial blood pressure (ABP) and 
the cerebral blood flow velocity (CBFV) in order to obtain the 
ARI. Preliminary results show a good performance by using a 
phenomenological model in comparison to the Aaslid-Tiecks’ 
model. 

I. INTRODUCTION 

The cerebral autoregulation system (CAS) is one of the 

fundamental biologic mechanisms. In mammals, the CAS 

allows the human body to work properly. This system 

supplies blood to the cerebral region, also providing needed 

nutrients which are metabolized in the brain. 

 In general terms, the cerebral autoregulation is affected by 

physiological and physicochemical variables, e.g. cerebral 

metabolic rate, posture, or carbon dioxide levels in the 

arteries; leading to a non-static autoregulation system but to a 

highly dynamic system able to adapt to sudden changes of 

blood pressure. Hence, its correct operation it is fundamental 

to avoid cerebrovascular diseases and keep a healthy brain. 

 Currently, methods to measure and diagnose 

cerebrovascular diseases are invasive. The skull makes 

difficult to take directly brain measures, therefore, it is not 

possible for patients to determine the brain condition using 

this kind of exams [1]. 

Furthermore, cranial trauma and cerebrovascular diseases 

are the base for some of the most frequent and dangerous 

neurological disorders currently detected due to the direct 

impact in the human brain. These diseases may be caused by 

serious skull injuries as well as an interruption of the cerebral 

blood flow, the latter, due to the clot generation or intense 

haemorrhage in a blood vessel preventing the normal blood 

circulation and the supply of oxygen to the brain. This 

malfunction may cause a brain disorder or even death, 

therefore, it is fundamental for the human brain to be 

optimally regulated. 

The cerebral autoregulation index (ARI) is a value 

fluctuating between 0 and 9, which indicate whether a person 

is doing the cerebral autoregulation properly. Currently, there 

are no exams nor models which compute a precise ARI. This 

index is very hard to obtain by a simple measure, as 

aforementioned, there are many variables which influence in 

the CAS. 

Therefore, there is an opportunity, on the one hand, to 

study novel methods to obtain variables difficult to measure, 

and methods which are not fully developed in the state-of-the-

art literature [2]. On the other hand, we take into account the 

growing use of mobile devices which could lead to an 

assistive diagnose by using smartphones. 

II. THE AASLID-TIECKS’ MODEL 

To better understand how to compute the ARI, we show 

the Aaslid-Tiecks' (A-T) model. The A-T model uses four 

state equations to represent changes in the blood pressure P(t). 

The set of equations is able to obtain the cerebral blood flow 

velocity (CBFV) [3] which is represented by V’ as follows: 

 

 
 

where dP(t) normalizes the pressure using a baseline, CrCP is 

the critical closing pressure, f corresponds to the sampling 

frequency, K represents a gain parameter in the equation, T is 

the time constant and D is the damping factor. Furthermore, 

X1(t) and X2(t) are the state variables of a second-order 

differential system. 

 This proposal of A-T shows ten different theoretical 

responses according to how are combined the parameters K, 

D, and T, which are associated with a fixed value of ARI as 

shown in Table 1. 

For each measured of P(t), the A-T model produces ten 

curves representing each ARI based on the velocity V’(t). The 

curves are compared with the real velocity of the subject and 

are measured using minimal square error or maximal 

correlation between the real velocity and the estimated 

velocity by the model. When the real velocity fits one of the 

ten estimated curves by either error or correlation, an ARI 

value is assigned. 



  

 

 

Table 1. Association between K, D, T, and ARI. 

K D T ARI 

0.00 1.70 2.00 0 

0.20 1.60 2.00 1 

0.40 1.50 2.00 2 

0.60 1.15 2.00 3 

0.80 0.90 2.00 4 

0.90 0.75 1.90 5 

0.94 0.65 1.60 6 

0.96 0.55 1.20 7 

0.97 0.52 0.87 8 

0.98 0.50 0.65 9 

 

III. THE SIMPSON’S MODEL 

Currently, the optimized Simpson’s model [4] to compute 

the ARI establishes that the relation between the CBFV and 

the arterial blood pressure (ABP) is represented by the 

equation (5). 

 

 
 

where i is the sampling index, V is the CBFV, p is the ABP, 

and h is the is the resulting coefficient to a filter impulse 

response (FIR). The filter uses as input and output the CBFV 

and the APB to get a numeric relation. For ABP, it is posed 

that exists a set of common coefficients to the subjects. 

Therefore, having only the pressure values is possible to 

obtain the estimated flow velocity and thus to compute the 

ARI based on the model A-T using the equations (1-4). 

 The proposed model in this work aims to find a better 

relationship between the CBFV and the ABP, hence, we 

propose to replace the coefficients from equation (5) to 

coefficients estimated by a gray-box neural model. 

IV. PROPOSED MODEL 

We hypothesize that an artificial neural network combined 

with the phenomenological model described in equation (5), 

to represent a gray-box model, may lead to a better 

association between the CBFV and the ABP and, therefore, to 

better results when computing the ARI. 

The proposed model comprises a neural gray-box model 

within a extended model as shown in Fig. 1. The gray-box 

model is based on an artificial neural network (black box) and 

a phenomenological part (white box). Furthermore, the 

extended model consists of the gray-box model and the A-T 

model which uses the variables ABP and CBFV estimated by 

the neural network to obtain the estimated ARI for a test 

subject. 

In the model shown in Fig. 1, it is observed that the 

extended model input is the ABP represented as 7 values 

which are associated to a flow velocity inside the gray-box 

model, thereafter it is evaluated in the A-T model to obtain 

the ARI. 

 
 

 

Fig. 1. Proposed extended model to obtain the ARI. 

 

In the extended model, the pressures work as a double 

input, in terms of they are given to the neural network as well 

as to the proposed A-T model with different aims in each 

subsystem. 

The gray-box model used in the work has been designed to 

work in a serial manner. This means that the obtained results 

by the empirical part of the model are sent directly to the 

phenomenological model [5] as shown in Fig. 2. 

 

 

Fig. 2. Gray-box neural model used to obtain the CBFV. 

 

The inputs of the neural network are the ABP of the 

subjects and, as stated above, they have a direct relationship 

with a single velocity, therefore, the output is defined as the 

CBFV. 

The training of the gray-box model is performed using 

indirect training, i.e. the error is computed at the output of the 

phenomenological model of the gray box [6]. We are 

interested to know the performance of the whole model and 

not particularly in the neural part of the model, therefore, we 

compute the error at the output of the gray-box model using 

the CBFV. 

The phenomenological part of the gray-box neural model 

contains the equation (5) which is represented along with the 

neural network using fixed neurons and weights. In this 

regard, the training algorithm does not modify these 

connections to keep unaltered its mathematical meaning of the 

equation. 

In parallel, the empirical model is represented by neurons 

and weights inside the same network. In contrast with the 

phenomenological part, these weights are adapted over the 

training. 

To complete the extended model, the output of the gray-

box model is used to compute the ARI based on equations (1), 

(2), (3) y (4) according to the A-T model. The experimental 

set-up is coded in Matlab. 

 



  

 

V. SUBJECTS AND MEASUREMENTS 

The data used in this work was measured in the University 

of Leicester, England and approved by the etic committee of 

the Royal Infirmary Hospital of Leicester. The data comprise 

the ABP and the CBFV divided in two phases for 16 healthy 

volunteer patients between 24 and 47 years old. The first 

phase is carried out with patients in normocapnia state 

obtaining measures of ABP and CBFV. Afterwards, in the 

second phase, the subjects are induced to inhale CO2, which 

leads them to a hypercapnia state. This state reduces the 

oxygen amount in the blood, hence, the subject is not fully 

healthy as in the first phase. These phases allow to observe 

differences through obtained data between the normo- and 

hypercapnia. 

The obtained samples were supervised by a doctor to 

assure that the data represent actual information for each 

subject. 

 

VI. DISCUSSION AND FUTURE WORK 

The preliminary obtained results by the Simpson’s model 

show the Receiver Operating Characteristic (ROC) equals to 

0.91. The ROC analysis allows to evaluate the quality of a 

diagnostic proceeding taking into account the sensibility and 

specificity of a model. 

Since the results obtained by the Simpson’s model, we 

hypothesize that the extended model may obtain better results 

for the ARI.  

Even though the Simpson’s model obtained a good ROC 

value, it is expected to improve it by using the proposed grey-

box neural model. Due to the mixing of the Simpson’s model 

(phenomenological part) with an artificial neural network 

(empirical part) would boost the data learning taking into 

consideration the states of normo- and hypercapnia to validate 

the analysis (healthy state versus deteriorated state of health 

induced by CO2 inhalation). 

As future work, we are planning to develop a mobile app 

to assist people to obtain easier diagnoses by mean of an m-

Health application. 
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