
Contextual Affordances for Action-Effect Prediction in a

Robotic-Cleaning Task

Francisco Cruz, German I. Parisi, and Stefan Wermter

Abstract— Affordances are a useful method to anticipate the
effect of an action performed by an agent. In this work, we
present a robotic-cleaning task using contextual affordances
implemented through a self-organizing neural network to pre-
dict the effect of the performed actions and avoid failed states.
Current results on a simulated robot environment show that our
architecture is able to predict future states with high accuracy.

I. INTRODUCTION

Affordances are available action possibilities for an

agent in its environment [1]. They represent character-

istics of the relation between an agent and an ob-

ject in terms of opportunities the object offers to the

agent. In robotics, they have been used as a triplet

affordance :=< object , action, effect > which encodes re-

lationships between its components [2]. Hence, it is possible

to predict the effect using objects and actions as domain

variables, i.e. effect = f (object , action).
Nevertheless, although this model has been shown to be

suitable for many scenarios, it does not include context

information which allows to anticipate effects in all situations

properly. Naturally the fact of being able to utilize or not one

affordance in certain states does not determine the existence

of the affordance itself. On the contrary, the affordance is still

present but cannot be applied in some states or can imply a

different effect using a certain action with a certain object.

To overcome this issue, it is possible to use

contextual affordances where an additional variable is

considered to introduce information about the state [3].

In this case, the previous triplet is now extended to

contextualAffordance :=< state, object , action, effect >

and to predict the effect we consider the function

effect = f (state, object , action). In some cases the object

can also be a location, e.g., we can state that a hill affords

climbing where the action is to climb and the object or

rather the location is the hill. In general, we use the term

object to refer to both objects and locations.

II. ROBOTIC SCENARIO

In this work we extend a reinforcement learning scenario

previously presented in [4]. The task consists of a robot

standing up in front of a table to clean it. The robot can

make use of one arm and its gripper to manipulate objects

in order to complete the cleaning task. In this regard, we
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TABLE I

REPRESENTATION OF DATA USED AS INPUT AND OUTPUT FOR NEURAL

CLASSIFICATION.

Data Representation

Side conditions Locations

d-d 1 0 0 0 home 1 0 0

d-c 0 1 0 0 left 0 1 0

c-d 0 0 1 0 right 0 0 1

c-c 0 0 0 1 none 0 0 0

Actions Objects

get 1 0 0 0 sponge 1 0

drop 0 1 0 0 cup 0 1

go 0 0 1 0 free 0 0

clean 0 0 0 1

define objects, locations, and actions. The scene includes

two objects: a sponge and a cup. The table is divided in three

zones, the left and right table sides and an additional position

called home where we place the sponge during the execution

of the task. We allow the robot to perform four actions: get

<object>, drop <object>, go <location>, and clean the

table section where the robot arm is placed at that moment.

All actions are performed using the v-rep simulator.1

Each robot state in the scenario is represented as

st =< handPos , handObj , cupPos, sideCond >, which

takes into account four variables: (i) the robot’s hand

position, (ii) the object held in the hand, if any, (iii)

the position of the cup, and (iv) the condition of each

side of the table, i.e. whether the surface is still dirty

or already clean. Nevertheless, from certain states the

agent could perform actions which lead it to a failed

state from where it is not possible to complete the task.

Therefore, we use contextual affordances to avoid such

failed states. For instance, let us assume the state is

st =< right , sponge, right , (dirty , dirty) >. If the robot

then cleans the right section of the table, it may shatter the

cup, hence, it is not feasible to finish the cleaning task from

the next state st+1.

III. OUR APPROACH

Our approach uses contextual affordances to predict the

effect after an action has been performed by the robot in the

cleaning scenario. We encode all the variables as presented

in Table I where we show the data representation for side

conditions, locations, actions, and objects. In side conditions,

1v-rep virtual robot experimentation platform - http://www.

coppeliarobotics.com/
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Fig. 1. Our architecture with a self-organizing complex neuron for future
state prediction. In our scenario, the next state reached by the robotic agent
represents the affordance effect.

letters d and c represent the fact of being dirty or clean for

each part of the table.

Afterwards, we use this representation to create the train-

ing data. As input we use vectors with 21 variables con-

taining information about the current state, the action, the

object and/or the location, whereas each state is contained

in the first 12 components of the vector considering the four

variables that define a state (see Fig. 1). The output corre-

sponds to the effect from contextual affordances encoded as

12 variables representing the next state. When the performed

action leads to a failed state all components of the output

vector are equal to zero. The data were created considering

all possible states together with actions and objects (or

locations). The total number of data samples is 368 instances

for the training of the complex neuron.

We use a clustering technique with a complex-valued

quadratic neuron [5] to define a new two-dimensional grid

on the output space of the neuron as presented in [6]. The

output of the neuron is y = WTX , where the superscript

(·)T is the matrix transpose and y ∈ C is a complex scalar.

For a given input vector X , the desired output y to be used in

the learning algorithm is defined as the nearest intersection

point of the grid lines of the complex plane. In practice, a

rounding function Ψ is defined that rounds to the nearest

integer for grid lines spaced at a fixed distance δ in both

directions:

Ψ(y) =
round(δRe(y))

δ
+ i

round(δIm(y))

δ
. (1)

In our implementation, we set δ = 0.001 with a decaying

learning rate. With each output value Ψ(y) we associate the

desired output state label for classification purposes.

After training, the self-organizing complex neuron is capa-

ble to associate high-dimensional input to low-dimensional

output with 100% accuracy. The final distribution of the
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Final distribution after 3 iterations

Fig. 2. Final distribution of the output projected into the complex domain
after 3 iterations for future state classification.

output after 3 iterations is shown in Fig. 2 in the complex

plane, where the x and y axes are the real and imaginary

parts respectively.

In this regard, our single complex neuron is able to predict

the caused effect of performing an action in this robotic

scenario with very few training iterations.

IV. DISCUSSION AND FUTURE WORK

The proposed architecture was able to successfully predict

the effect of performing an action in the robotic-cleaning

scenario in order to avoid failed states and effectively finish

the cleaning task.

The self-organizing neuron allows to map the input vectors

into valid states with few training iterations, which represents

an advantage for online learning applications where the

response time plays a crucial role.

In the near future, we are interested in extending the

simulated scenario to a real robot platform obtaining the

input vector using vision and replacing the output vector

with the real state of the robot after performing the action.
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