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Abstract
Early alert fire and smoke detection systems are crucial for management decision making as
daily and security operations. One of the new approaches to the problem is the use of images
to perform the detection. Fire and smoke recognition from visual scenes is a demanding task
due to the high variance of color and texture. In recent years, several fire-recognition approaches
based on deep learning methods have been proposed to overcome this problem. Nevertheless,
many developments have been focused on surpassing previous state-of-the-art model’s accuracy,
regardless of the computational resources needed to execute the model. In this work, is studied
the trade-off between accuracy and complexity of the inverted residual block and the octave
convolution techniques, which reduces the model’s size and computation requirements. The
literature suggests that those techniques work well by themselves. Furthermore, in this research
was demonstrated that combined, it achieves a better trade-off. Efficient models are required
for hardware constrained systems, such as mobile devices, embedded systems, and robotics,
achieving high performance at low-power consumption. This work proposed the KutralNext
architecture, an efficient model with reduced number of layers and computacional resources
for single- and multi-label fire and smoke recognition tasks. Additionally, a more efficient
KutralNext+ model improved with novel techniques, achieved an 84.36% average test accuracy
in FireNet, FiSmo, and FiSmoA fire datasets. For the KutralSmoke and FiSmo fire and smoke
datasets attained an 81.53% average test accuracy. Furthermore, state-of-the-art fire and smoke
recognition model considered, FireDetection, KutralNext uses 59% fewer parameters, and
KutralNext+ requires 97% fewer flops and is 4x faster.
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Chapter 1

Introduction

The presence of fire in some environments is capable of causing massive losses; hence,
the early recognition for this kind of accident is primordial. Early recognition of fire can be
translated in a quick response to manage the accident, and therefore, high accuracy of fire
recognition is also essential. In this regard, a system capable of triggering an alarm with high
accuracy is crucial for the response team in charge of monitoring this kind of accident.

Fire accidents can be present in many environments, e.g., open-air, private, or commu-
nity use spaces, among others, and can be originated because of human intervention, piece of
machinery malfunction, unstable state of some structures, or in many other cases as a conse-
quence of other natural disasters. Uncontrolled fire, or blaze, can affect in economic, social, and
environmental way principally. This damage could be restored or not. In case it could be restored,
considerable effort and consequently, resources are required. A common type of fire accident is
the forest fire, which can significantly damage the environment [1] and increase its severity if it
spreads.

In Latin America, the forest fires are mainly present in the Amazonia [2] and Chile [3],
and have economic and environmental consequences such as mentioned by Urzua et al. [4].
Chile, just in 2014, had more than 8000 fires, which affected 130000ha. After the forest fire, the
soil remains damaged [5], and it is difficult for the vegetation to grow again. When this type of
accident occurs in the environment, all plants and animal life disappear from the affected zone
due to the environment’s perturbation. The fires’ problem is that they are unpredictable, in the
way of when or where they will occur, especially for forest fires. Hence, an early alert system
would help to manage these accidents or natural disasters.

This work proposes an efficient deep learning model to recognize fire and smoke as a
multi-label classification task specialized for embedded devices such as CCTV devices, mobile
and robotic systems. The model’s architecture development focused on low computing power
devices with high accuracy in acquiring fire and smoke features. In order to obtain a suitable
model, different architectures were proposed inspired by generic- and specific-purpose deep
learning models and trained with previously used datasets. Hereof, a final efficient architecture
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was developed after checking different efficient techniques such as convolve methods and
convolutional blocks with a specific setup.

1.1 Motivation

The fire alarm systems are a combination of sensors and machine learning algorithms to
identify patterns of warning. Usually, the sensor system is composed of: (i) heat or temperature
detectors, which typically are not early warning devices; (ii) flame detectors that habitually are
built-on optical, UV, and IR sensors; and (iii) smoke detectors, frequently using photoelectric,
ionization, or a combination of both. The use of images to fire recognition is a new promising
approach [6], based on the excellent results that deep learning models obtain in image processing
applications [7], avoiding the use of special sensors to perform the recognition.

The Deep Learning (DL) approach [8] has proved to be suitable for automating the
feature acquisition from complex data in machine learning tasks. In such a way, DL works in
multiple levels of abstraction for data representation. Considering that, the use of computer
vision to fire recognition reduces specific sensors’ necessity, being suitable for the inlay to
portable, remote, and mobile devices. However, DL approaches have some challenges: (i) the
required computational resources; (ii) the model’s computation complexity and size; and (iii) the
quantity of data needed for its training, among others. The previous challenges can be tackled by
focusing on the development of deep learning models for mobile devices [9], which has been a
less explored area in DL literature.

Many benefits can be obtained from developing an efficient portable DL model. In the
first place, this kind of algorithm can process more images during a determined amount of time,
hence, recognize fire in real-time at a high frame rate. In the second place, it can be executed
parallelly in the same machine to process data from different sources simultaneously. These
algorithms can be used in robotics or autonomous mobile systems, capable of using reduced
processing power, storage size, and energy consumption in terms of implementation.

1.2 Objectives

1.2.1 General objective

Study, develop and compare efficient deep learning techniques to build a lightweight and
computationally inexpensive model for fire recognition in still images.

1.2.2 Specific objectives

• Study about deep learning and current efficient processing image techniques.
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• Define image dataset to benchmark state-of-the-art and developed fire recognition models.

• Develop a baseline lightweight approach and a more efficient one for fire recognition.

• Perform training and testing of each proposed model.

• Compare the state-of-the-art and developed models’ benchmark results.

1.3 Methodology

In order to fulfill the objective of this work to develop a lightweight and efficient model
for fire recognition, the following methodology was implemented. In the first place, a literature
review of current deep learning methods used to recognize fire with a lightweight scope. In the
second place, a literature review of current techniques to improve deep learning tasks such as
classification, considering convolutions, activation, and loss function, among others. Once the
state-of-the-art was found, a dataset selection follows to benchmark each model’s performance
in the fire and smoke recognition task. In this way, previously used datasets were reviewed
and relabeled to use in this work, obtaining training, validation, and testing subsets. The first
experimentation stage consists of optimizing a model to recognize fire in a single-label approach.
A multi-label approach is later addressed to recognize fire and smoke as an extension from the
single-label approach, using the best-proposed architectures. Those models first learned more
complex features in a challenging dataset to be optimized in the selected datasets for this fire
and smoke recognition task. More details about this are mentioned in chapter 3 and illustrated in
Figure 1.

The state-of-the-art models were replicated from their original works by the respective
authors to compare the proposed approaches. For the proposal, a lightweight baseline architecture
was defined to develop portable models, with efficient techniques replacing some baseline blocks.
Each technique improvement level was tested separately and combined. Furthermore, a fine-
tunning and transfer learning methods were used to improve the proposals’ performance. The
training and testing stages were executed with each dataset under a cross-validation and cross-
testing setup.

With the models’ parameters optimized, the validation and testing accuracy, the receiver
operating characteristic (ROC) curve, the area under the ROC curve, the number of parameters,
and floating operation points were measured to analyze the suitability to be implemented in
low-resource hardware and run at a high frame rate, proving to be computationally inexpensive
with high accuracy.
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Fire and smoke recognition
models literature review

Deep learning
methods literature review

Image datasets selection,
processing and elaboration

Single-label fire
recognition experimentation

results

Multi-label fire and smoke
recognition experimentation

results

KutralNet
efficient proposal
for fire recognition

KutralNext
proposal's extension to

fire and smoke recognition

Datasets complexity
analysis results

OctFiResNet
lightweight proposal
for fire recognition

Figure 1 – An overview of the proposed methology. Green squares represent the literature review
stages. The orange squares are each proposal of this project, and the purple ones are
the experimentation for each proposal. The blue square represent the dataset selection,
processing and elaboration for all the images used in this research.

1.4 Obtained results and contribution

During this work, two contributions were achieved for the fire and smoke recognition
problem. The first one is a suitable dataset for training models to recognize images with only
fire or fire and smoke in a classification task. The FiSmo dataset was previously compiled from
internet images search engines and other datasets with images labeled with fire, smoke, and none.
In this work, FiSmo was relabeled and augmented to be used in a multi-label approach for fire
and smoke recognition. A second benchmark dataset was also compiled from previous datasets
and combined to create training and testing subsets under the same multi-label approach.

The second contribution is the efficient KutralNext baseline architecture to recognize fire
and smoke in images, with a reduced number of layers, hence, storage size and computational
resources. Thus, a more efficient KutralNext+ architecture was developed from the baseline with
novel convolution methods, capable of achieving a good generalization and acquiring useful
features to recognize fire and smoke in still images with an 81.53% of average test accuracy in
the KutralSmoke and FiSmo fire and smoke datasets. Moreover, KutralNext+ obtained a 93.40%,
and 94.22% AUROC and precision values in acquiring fire features, and an 89.59% and 56.27%,
respectively acquiring smoke features. Outstanding results were achieved by KutralNext+,
presenting 97% fewer flops and executed 4x faster than FireDetection, a previous fire and smoke
recognition model.
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1.5 Document structure

• In chapter 2 are mentioned the previous approaches which tackling the fire recognition
problem, being the most recent using deep learning methods with some novel convolution
methods to process a high dimensional input. Additionally, the literature review of deep
learning techniques for fire recognition are also discussed.

• In chapter 3 is detailed each contribution of this work, presenting the implemented tech-
nique, how they were built, the developed models, and the training strategies used.

• In chapter 4, are detailed the datasets used in this work to further compare each proposed
model with previous state-of-the-art and the metrics used for this purpose.

• In chapter 5 are the benchmark results of each proposal with previous models, starting
from the OctFiResNet approach to the following KutralNet architectures to finally get
the KutralNext+ model, demonstrating its effectiveness and suitability for being used in
hardware-constrained systems.

• In chapter 6 are the final remarks summarizing the works achievements and future works
proposals.
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Chapter 2

Background

In the last years, multiple methods to automate fire recognition were proposed, most of
them for video surveillance systems, such as Closed Circuit TV systems. Some surveillance
equipment uses low-resolution cameras at a flat frame rate and others more sophisticated ones
with proper image resolution cameras. For a machine to have the ability to recognize fire from still
images is a highly demanding task due to recognition of texture, color, and the fire’s phenomenon
representation by itself [10].

The first approaches to fire recognition in computer vision were addressed using the
color space. Yoon-Ho et al. [11] presented a work that uses the RGB space information to detect
the foreground of fire-like objects in video sequences for a CCTV fire detection system. Another
color-based technique was presented by Nikos et al. [12], where the authors process the spectral
color space from optical and infrared cameras as a remote fire surveillance system. Another
technique is presented by Dimitropoulos et al. [13], where the authors developed a texture
recognition algorithm employing color probabilities and contour irregularity features. In their
following work [14], the same authors implemented a dynamic analysis to take advantage of the
fire’s features obtained using linear models. Finally, in color-based algorithms, a Spatio-temporal
approach was addressed by Barmpoutis et al. [10], which analyzes frame by frame, searching for
flickering and color-probability.

The most recent method has been addressed using a deep learning approach through
a convolutional neural network (CNN). The CNN process an input data image through each
convolutional layer to finally infer which label must correspond to the input image. More details
are discussed in the following section.

2.1 Deep learning

Machine learning algorithms have been processing raw input data to solve many problems
through a pattern-recognition construction so long ago. Deep learning (DL) [8] is a technique
used to learn data representation from a high dimensional raw input over multiple processing
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layers. This technique discovers the underlying structure in large datasets by optimizing its
parameters with the backpropagation algorithm. Generally speaking, the more processing layers
used, the more complex structure can be discovered.

In this work, we will focus on the supervised learning paradigm [15], which in simple
words can be defined as a mapping function that must be found from annotated training data.
Each data instance is labeled with the class where it belongs, i.e., an RGB image labeled with a
car, cat, or dog class. This mapping function is composed of parameters that must be optimized
to achieve a high score for each category label at the function’s exit. In this regard, an objective
function must be settled to measure the error between the function output and the corresponding
label to further properly adjust the trainable weights to reduce this error. The learning algorithm
optimizes the parameters by computing a gradient vector for each weight, determining how much
it must variate, being updated in the opposite direction to the gradient vector. These errors and
gradient values are computed over all the training examples; however, it is not always feasible
to load the entire data on memory, being introduced by batches of N data elements that will be
loaded and processed by the function or weighted model.

The model’s error reduction can be made by a simple stochastic gradient descent (SGD)
procedure. This procedure consists of feeding the model with a few examples, inferring the out-
puts, computing the errors, computing the average gradient, and adjusting the weights properly.
The procedure is repeated over all the data batches until the average of the objective function
stops decreasing. When the model’s stack of layers is bigger, the gradient computation becomes
tricky. However, multi-layer gradient computation has already been solved by the backprop-
agation algorithm [16], investigated by several different groups during the 1970s and 1980s.
Backpropagation’s main idea is applying the chain rule for derivatives (or gradients), calculating
the gradient of a layer backward from the output of the same layer or the same as the input of the
subsequent layer. In this regard, the gradients are propagated from the top, or exit, back to the
bottom, or input of the model.

2.1.1 Convolutional neural networks

These neural networks (NNs) were designed to process data represented in multiple
arrays like 1D sequence or audio signal, 2D image data with color space data, or 3D volumetric
images in videos. Additionally, they are biologically inspired by the classic notion of visual
neuroscience cells [17] and the visual cortex ventral pathway [18]. Four key ideas are denoted
from the physiological properties, local connections, shared weights, pooling, and layers’ stack.

A model architecture is commonly made of a stack of convolutional blocks, containing
a convolutional layer, a non-linear activation function, and a pooling layer. The convolutional
layers are organized in feature maps and connected to local patches in the feature maps of
previous layers after being processed by a bank’s weighted kernel filter. The mathematical
approach for the feature map is a discrete convolution, hence the name. As image data is often
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highly correlated between pixels, becomes essential a weighted kernel to keep the feature map’s
correlation and detect an specific pattern in different data parts. Between one layer and another,
a non-linear activation function passes the signal from the current layer to the next, distorting the
input for the categories become linearly separable by the last layer. Pooling layers can detect
local feature conjunctions from the previous layer, merging semantically similar features into
one done by coarse-graining the position of each feature, reducing the dimension at the output.

2.2 Efficient deep learning methods

With the success of deep convolutional neural networks, efficient techniques had appeared
with newly proposed models. The first known used technique is the residual connection [19],
which formally can be defined asH(x) = F(x) + x where x is the input signal or the identity
connection, and F(x) is the convoluted input signal. This strategy reduces the overfitting during
the training of deeper architectures, improving a gradient’s ability to propagate across multiples
layers requiring almost the same number of operations.

The second widely used technique is the depthwise separable convolution, which sepa-
rates the convolution in a channel-wise spatial correlation mapping, followed by a cross-channel
mapping with a 1x1 convolution, also called pointwise convolution. Chollet et al. [7] proposed
the Xception model, where the authors used depthwise separable convolutions and residual con-
nections in the architecture. Depthwise convolution was first presented by Sifre et al. [20], and
more deeply proven its efficiency by Chollet [7] with its Xception model, which uses depthwise
separable convolution and residual connections in almost all the architecture. The computational
cost of a vanilla convolution is given by

Cv = Dk ∗Dk ∗M ∗N ∗Df ∗Df ,

whereDk is the kernel size, assumed square,M is the number of input channels,N is the number
of output channels, and Df is the feature map size. In comparison, the depthwise convolution’s
computational cost is given by

Cdw = Dk ∗Dk ∗M ∗Df ∗Df .

In this regard, the depthwise convolution is more efficient than the vanilla convolution because it
breaks the relationship between the number of output channels and the kernel size. The addition
of the 1x1 convolution to the depthwise convolution was proposed by Sifre et al. [20] and the
final computational cost

Csdw = Dk ∗Dk ∗M ∗Df ∗Df +M ∗N ∗Df ∗Df ,

obtaining a reduction of

Wsdw =
Dk ∗Dk ∗M ∗Df ∗Df +M ∗N ∗Df ∗Df

Dk ∗Dk ∗M ∗N ∗Df ∗Df

=
1

N
+

1

D2
k

. (2.1)
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(a)
(b)

Figure 2 – Main DL techniques used in this work. (a) The inverted residual block. Diagonally
hatched layers do not use non-linearities. The thickness of each block is used to
indicate its relative number of channels. The inverted residuals connect the bottlenecks.
Adapted from [21]. (b) Detailed design of the octave convolution. Green arrows
correspond to information updates, while red arrows facilitate information exchange
between the two frequencies. Adapted from [22]

A third most commonly used technique is the inverted residual block [21], which is
composed of depthwise separable convolution and residual connections. The peculiarity of
this convolutional block is the presence of the shortcut in the bottleneck, between the layers
with a low number of channels as can be observed in Figure 2a. Additionally, it presents an
expansion layer that increases the number of channels processed between the bottleneck using a
depthwise convolution, before and after pointwise convolution. This convolutional block presents
a computational cost of which depends on an expansion rate t

Cirb = Df ∗Df ∗M ∗ t(M +D2
k +N). (2.2)

Another new technique for efficient model design is the octave convolution [22], which
decomposes the input signal in a high-spatial frequency to describe the rapidly changing details
and in a low-spatial frequency to describe the smoothly changing structure. The authors have
demonstrated that use the octave convolution in popular DL models like ResNet [19] consistently
improves the results, reducing the flops and model’s size. Formally, let X be the input image
∈ RM∗Df∗Df , where Df is the spatial dimension considered squared, and M the number of
channels. X is factorized into X = {XH , XL}, considering XH ∈ R(1−α)M∗Df∗Df the high-
frequency feature maps of fine details, and XL ∈ RαM∗

Df
2

∗
Df
2 the low-frequency feature maps

of general characteristics. Here α ∈ [0, 1] is a hyper-parameter denoting the ratio of channels
allocated in the low-frequency part. In this regard, the computational cost is reduced by two
components given by

Co = Df ∗Df ∗M ∗N ∗ (1− α) +
Df

2
∗ Df

2
∗M ∗N ∗ α, (2.3)

where N is the number of output channels. Each side of the equation’s addition represents the
convolutional cost for the high- and low-frequency. After processing the signal, each frequency
feature map’s information is exchanged between them, as shown in Figure 2b.
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2.3 Fire and smoke recognition

The most recent methods using DL approaches have tackled the problem of fire and
smoke recognition through a convolutional neural network (CNN), as a single-label classification
task, where the CNN process an input data image by each convolutional layer, reducing its
dimensionality into meaningful features. The features acquired by a CNN have been proven to
be related to the network’s depth. Early layers can obtain simple features like colors and shapes,
and final layers process complex features [23]. After rich features were obtained from the input,
this data representation is processed by a classifier, which usually is a linear regressor. A few
fully connected layers with a considerable amount of hidden units can also be used as a linear
regressor to infer which label corresponds to the image. The most recent methods are detailed as
follows.

Sharma et al. [24] developed a custom fire classification model based on VGG16 [23]
and ResNet50 [19], two generic-purpose DL models, where the authors just modified the
classification stage, adding one fully connected layer at the top of the network implementing
transfer learning and fine-tuning methods. Additionally, the authors created their dataset with
651 images, considering 549 unbalanced images for training with 490 non-fire images, assuming
that the probability of fire occurrence is relatively small. However, the testing subset is balanced
with 102 images presenting 51 images for each situation. Muhammad et al. [25] had proposed a
SqueezeNet based-model, where the authors present a custom framework to process the input
signal, to classify and locate the fire in a single-label approach. Namozov et al. [26] presented
a VGG16 inspired approach with 12 convolutional layers and the adaptative piecewise linear
activation [27] function instead of traditional rectified linear units [28]. Their proposal was trained
with their dataset with 2440 images labeled as fire and smoke equally balanced. Additionally, the
authors implemented data augmentation using Generative Adversarial Networks to create three
subsets from the original one. Gotthans et al. [29] proposed the Fire Detection model to fire and
smoke recognition trained with two datasets to compare it against AlexNet [30] and SqueezeNet
[31]. The model received an input image of 224x244 pixels with RGB channels, normalized
with mean values of (0.485, 0.456, 0.406) and standard deviation of (0.229,0.224, 0.225) for
each channel. The authors proposed to achieve a lightweight model capable of recognizing just
fire, and fire and smoke in still images. Additionally, they tested the model’s execution in the
Jatson Nano platform, obtaining the same results. The Fire Detection model reduced in 27% the
execution time compared to AlexNet, with only 1% less accuracy.

A lightweight model was proposed by Jadon et al. [32], capable of processing images
of 64x64 pixels on RGB channels. The architecture comprises three consecutive convolution
blocks that contain a convolution layer, an average pooling layer, a dropout layer, and three
fully connected layers as the classifier. Additionally, the authors presented training and testing
datasets with 2,425 and 871 images each, achieving good performance. The proposed approach
was focused on being used in an IoT embedded fire alarm system. Oh et al. [33], used the
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EfficientNet-B0 [34] generic-purpose model to recognize a fire emergency from images. The
model was optimized using transfer-learning and fine-tunning methods from a pretrained version.
A custom dataset was also collected from various image search engines, using an automated
downloading algorithm for cloud, snow, rural, fire, wave, and waterfall labeled images. Next,
they made a manual cleanup operation obtaining a total of 14,741 images. In this case, the
fire-labeled images contained an open-air environment with the presence of fire, smoke, or both.

2.4 Discussion

To summarizing, many fire and smoke recognition algorithms were proposed using
general-purpose deep learning models, focused on surpassing previous results mainly. All
previous approaches address the fire and smoke classification problem under a single-label
approach, leaving out that the fire and smoke labels can be present separately, together, or not
present. The fire recognition task has been proven to require just a few layers to achieve a good
performance in acquire fire’s features. In this regard, a lightweight and efficient architecture must
be affordable to be implemented in hardware constrained systems to monitoring or fire control.
For example, the development of this kind of fire recognition DL model can work in the mobile
vehicle system for fire detection proposed by Madhevan et al. [35].
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Chapter 3

Efficient fire and smoke recognition model

As fire images present characteristics hardly to be hand-craft extracted, a DL approach is
used for this purpose in this work. Three different DL architectures were developed in this work’s
aims, focused on reducing the size and computational cost to achieve fire and smoke recognition
in still images. As mentioned in section 2.2, experiments with different novel techniques were
carried out, checking the feasibility of obtaining small and efficient models suitable for low
computing power. In this regard, the residual connection [19] and the octave convolution [22]
were tested on the first lightweight approach inspired in the ResNet architecture to recognize fire
in still images, called OctFiResNet. Next, a custom specific-purpose lightweight DL architecture
is proposed with five convolutional blocks and a residual connection before the classifier with
two exits, one for the fire label and the other for the non-fire label. The reduced architecture is
named KutralNet and used as a baseline to develop efficient portable models using the octave
convolution, the depthwise convolution [20], and the inverted residual block [21] separated and
combined. Moreover, as KutralNet extension, the best efficient models were pretrained using the
ILSVRC 2012 dataset and learning complex features to use transfer-learning and fine-tuning
methods to recognize fire and smoke in images. A single-label approach was addressed in all the
previous proposals to classify the fire and smoke presence in images. However, a multi-label
approach brings out a more specific fire severity recognition level, inferring in different non-
exclusive units the fire or smoke presence in an image. This KutralNet extension was named
KutralNext, implementing a different objective function to solve the unbalanced labels data
distribution present in datasets.

3.1 ResNet based fire recognition model

The first proposed model is based on the ResNet architecture, which comprises levels of
blocks with convolutional layers, followed by a batch normalization layer and an activation layer.
Furthermore, each block connects its input independently with the block’s output, known as
residual. Therefore, the next block obtains as input the processed and raw signal from the current
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block. Each level’s first block of the ResNet architecture, unlike the middle blocks, process the
residue by convolution and batch-normalization layers. To connect each block uses an activation
layer that processes the previous block signal to the next one.

To obtain a lightweight model capable of reaching high performance on portable hard-
ware, it needs to have as few parameters as possible. In order to reduce the parameters model
number, this work proposed a low deep level architecture. This low-depth model with just a
few layers is suitable for recognizing fire, demonstrated by Jadon et al. [32], to work with a
constrained-hardware system. This first OctFiResNet approach, to work with the minimum
hardware requirements as possible, the octave convolution [22] replaces the vanilla convolutions.
The octave convolution processes the signal in two different channels, one for high-frequencies
to acquire more detailed features and the other for low-frequencies to more general features. This
technique allows the model to work with less memory and fewer flops compared to a vanilla
convolution layer.

Combining the ResNet-like architecture with octave convolutions reduces the model’s
size and computational cost. The input for the network is a 96x96 pixels image at the RGB
channel. This architecture is composed of 2 ResNet levels with 4 and 2 blocks, respectively. It
has a global average pooling on top of the network, followed by a fully-connected layer with
two exits and a softmax activation. The α ratio value for the octave convolution is 0.25 and with
64 initial filters. This configuration turns out a model with 956,226 trainable parameters with
an on-disk size ~12MB. The model’s development was using the PyTorch library. A simplified
version of the architecture can be seen in Figure 3, and additional implementation details are in
the project’s repository1.

3.2 Lightweight efficient deep learning model

The following proposal for fire recognition sets a baseline model to develop portable
versions focused on reducing the model’s complexity in processing the input image. The Ku-
tralNet2 model was developed as a suitable option for limited hardware devices and built other
efficient versions using the octave convolution and the inverted residual block to test each effi-
cient technique by themselves and combined. Hereof, three portable models were obtained from
this baseline using efficient deep learning techniques. The octave and depthwise convolution
[22, 21] demonstrated excellent performance with a sharp reduction of operations and parameters
required, resulting in more efficient models. This reduction is resulting from convolutions with
low kernel dimensions for both cases.

For the case of the separable depthwise convolution in the inverted residual block [21],
it increases the number of parameters and reduces the flops efficiently, as demonstrated in
1 OctFiResNet’s public repository <https://github.com/angel-ayala/fire_recognition>
2 The name took inspiration from Mapuche language or Mapudungun where kütral means fire.

https://github.com/angel-ayala/fire_recognition
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Figure 3 – Simplified architecture of the proposed model blocks of ResNet with octave convolu-
tion. To the left is the initial block, where the residual passes through a convolution
and batch normalization. In the middle, it is the consecutive block with no processed
residual, which is repeated 3 times with 2 levels. Finally, to the right is encountered
the top layers which merge the octave convolution into one. After this, the signal is
processed by a ReLU activation consecutive with a ResNet block of 3 levels with
vanilla convolution, batch normalization, and ReLU activation.

Equation 2.1. Given the grouping way to process the convolution channels denoted as groups =
Cin and out_channels = Cin ∗ K, in which the output filters are K times the input filters,
reducing the mathematical complexity of the operation formally expressed in Equation 2.2. For
the octave convolution case, a reduction in both parameters and flops is achieved due to the
separate way of processing the filters on high and low frequency, computing the parameters
information W into two components W = [WH ,WL] and exchanging the information between
them, expressed in Equation 2.3. Additionally, these convolution techniques, used in different
deep learning model architectures, and various tasks such as classification, object detection,
and semantic segmentation, achieve a model’s size reduction, less computational requirements,
and improved performance in some cases. This second proposal combines these techniques,
presenting a new convolution type, achieving a valuable trade-off between accuracy, model size,
and computational cost. Additional details of the implementations are in the project’s repository3.

3.2.1 Baseline model’s architecture

The KutralNet model’s baseline was inspired by OctFiResNet and FireNet models,
mixing between a deep model and a lightweight one, capable of processing 84x84 pixels
3 KutralNet’s public repository <https://github.com/angel-ayala/kutralnet>

https://github.com/angel-ayala/kutralnet
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images in RGB channels. The KutralNet architecture comprises three kinds of convolutional
blocks, named KutralBlockN (KBN), where N corresponds to the number of output channels,
KutralBlockP (KBP), and KutralBlockO (KBO). KBN block was built with a convolution layer
with N channels as output, a batch-normalization layer, a LeakyReLU activation, and a max-
pooling layer to size-down the output. Next, the KBP block comprises two convolution layers
and a batch-normalization layer. Finally, the KBO block possesses a LeakyReLU activation, a
global average pooling layer, and a fully-connected layer with two exits, one for fire and the
other for non-fire labels. This architecture was defined for processing low-dimension images in a
lightweight configuration. Each block details are shown in Figure 4a. As shown in Figure 4b, the
architecture consists of three KBN blocks, one KBP block, and finally, a KBO output block. A
max-pooling and batch-normalization layers, as a shortcut, process the signal from the KB64
block to the final KBO output block. This setup was followed because it has been proved that just
a few layers can acquire enough features for a fire classification task to improve the inference
time [32]. Additionally, using a shortcut and batch-normalization layers avoids overfitting the
model [19]. Also, the LeakyReLU was chosen since a non-zero slope for the negative part
improves the results [36] and presents a low-cost implementation.

3.2.2 KutralNet Mobile

With those convolution methods, previously mentioned in section 2.2, the first portable
model, KutralNet Mobile was developed by implementing the inverted residual block named
KutralMobileBlockN-E (KMBN-E) in replacement of the KBN blocks from the baseline archi-
tecture. The N -E refers to the number of output channels and the expansion rate t, respectively.
The KMBN-E block comprises a pointwise followed by a separable depthwise convolution,
with a batch-normalization layer and a ReLU6 activation in between. Additionally, a batch-
normalization layer is stacked at the end of the block. A representation of the KMBN-E block is
shown in Figure 5a.

KutralNet Mobile’s architecture structure contains a KBN block, followed by three
KBMN-E blocks and the KBO block at the end. A shortcut connection process the signal from
the first KMB64-4 block through a max-pooling layer and a batch-normalization layer to the
final KBO block, as shown in Figure 5b.

3.2.3 KutralNet Octave

The second portable KutralNet Octave model replaces all the vanilla convolution from
the baseline’s architecture with the octave convolution [22]. In this case, the octave convolution
separates the processing into the octave feature representation or low-frequency signal for the
most general features and its counterpart or high-frequency signal for the most fine-grained
features. A hyper-parameter α gives each convolution’s size, processing the signal separately, and
exchanging the information between them at the end. This convolution was named OctConvN,
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Figure 4 – (a) The KutralNet main blocks. The KutralBlockN (KBN) where N refers to the
output channels number, KutralBlockP (KBP), and the KutralBlockO (KBO). (b) The
baseline KutralNet model with three KBN blocks, a KBP block, a shortcut connection,
and a KBO block with two exits.

where N denotes the number of output channels. The α parameter for the OctConvN was settled
to 0.5 in all the cases. Additionally, the main convolutional block was named KutralOctave-
BlockN (KOBN), where N is the number of output channels passed to the OctConvN, followed
by twins of batch-normalization layers, twins of LeakyReLU activation and, twins max-pooling
layers. One of each twin-layer member is for the high- and low-frequency convolution. An
overview is shown in Figure 6a.

KutralNet Octave is composed by two KOBN blocks, a KBP block merged with a
shortcut connection from the KOB64 block, processing the signal through an OctConv128 block,
to the final KBO block, as presented in Figure 6b.
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Figure 5 – (a) The KutralNet Mobile main block, the KutralMobileBlockN-E (KMBN-E), where
N refers to the output channels number and E to the t value of expansion rate. (b)
The KutralNet Mobile model with a KB32 block, three KMBN-E blocks, a shortcut
connection, and a KBO block as the exit.

3.2.4 KutralNet Mobile Octave

The third and final portable model combines the previous two models, using the inverted
residual block structure [21] with the octave convolution [22] strategy, and was named KutralNet
Mobile Octave. Like the KMBN-E block uses separable depthwise convolution, the developed
octave version replaces the kernel sizes, resulting in new blocks named OctConvPN for the
pointwise 1x1 convolution and OctConvDN for the depthwise convolution. The KMBN-E block
modified version is named KutralMobileOctaveBlockN-E (KMOBN-E), where N -E refers to
the output channels number and the expansion rate t, respectively. It comprises an OctConvPN
block, twins of batch-normalization, twins of LeakyReLU activation, OctConvDN block, twins
of batch-normalization, twins of LeakyReLU activation, another OctConvPN, and finally twins
batch-normalization layers. For the first OctConvPN and OctConvDN, the N number of output
channels is given by multiplying N output number channels by E expansion rate value from the
KMOBN-E block. These main blocks are shown in Figure 7a.

KutralNet Mobile Octave constitutes a KBN block, followed by three KMOBN-E blocks
and a KBO block. Additionally, a shortcut connection process the model’s signal from the first
KMOB64-4 block through twins max-pooling layers, twins bath-normalization layers and, an
OctConvPN block to the final KBO block.
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Figure 6 – (a) The KutralNet Octave main blocks, the upper block, is a simplified version
of the Figure 2b, named OctConvN. The lower block is the KutralOctaveBlockN
(KOBN), where N refers to the number of output channels passed to the OctConvN.
(b) The KutralNet Octave model with two KOBN blocks, two OctConv128, a KBP
block, a shortcut connection, and a KBO block as the exit. The input and output
for the OctConvN block, when α = 0, just the high-frequency convolution is used,
represented with the left-side arrow from one block to another.

3.3 KutralNext: Multi-label fire and smoke recognition model

All of the previous methods were considered using a single-label fire-flame classification
task, indicating if there is a fire presence in the images or not. In this third and final proposal, a
multi-label fire and smoke recognition task extends the KutralNet proposal called KutralNext.
In terms of architecture, no changes were made in this proposal, and the main changes rely on
the classifier exits of the KBO block. For KutralNet, one exit was used for the positive case and
the other for the negative case of fire presence, being mutually exclusive. For KutralNext, the
first exit indicates fire presence in the image, and the second exit indicates if there is smoke
present in the image, being complementary. Additionally, KutralNext uses a pretrained version
of KutralNet, and KutralNet Mobile Octave with ImageNet explained next. Those models were
named KutralNext and KutralNext+, both chosen from previously obtained results, demonstrating
good performance in fire recognition trained from scratch. The models were adjusted for fire and
smoke recognition using the Class Balanced loss function, explained later. Experiments have
demonstrated that the multi-label approach, in addition to recognizing smoke in the image, it
also improves the model’s capability to acquire fire’s features.
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Figure 7 – (a) The KutralNet Mobile Octave main blocks, the KutralMobileOctaveBlockN-E
(KMOBN-E), where N refers to the number of output channels and E for the t value
of expansion rate. OctConvPN and OctConvDN are the octave convolution version
for the separable depthwise convolution layers. (b) The KutralNet Mobile Octave
model with a KBN block, three KMOBN-E blocks, a shortcut connection, and a KBO
block as the exit. The left-side connection from one block to another represents the
α = 0 value for the input or output of octave convolution.
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3.3.1 ImageNet Pretraining

One of the challenges in deep learning model developments is the huge amount of data
required for training. In this regard, using pretrained models over a challenging dataset with a
considerable quantity of instances and labels improves the results using transfer learning and
fine-tuning, reducing the data required to learn filter kernels to acquire valuable information
from a high dimensional input.

For this purpose, we use the ImageNet ILSVRC 2012 dataset [37], which comprises 1.3
million instances with 1,000 classes, designed for a classification and detection competition,
being widely used as a models’ performance benchmark. Many classical DL models such as
ResNet and EfficientNet have been trained with ImageNet and are publicly available in different
repositories to be used by the community. We use the ImageNet dataset to training the baseline,
and the efficient architectures for later use in the fire and smoke classification task.

3.3.2 Class Balanced Loss

As a dataset grows, focused on obtaining more instances of those classes of interest, it is
much more likely to have a long-tailed distribution with many underrepresented classes. A novel
framework is implemented in our proposal to deal with this class imbalance issue, which uses the
effective number of samples or expected volume of samples to define each class’s impact on the
loss value. This method is named class balanced loss [38], and defines the effective number of
samples as (1−βn)/(1−β), where n is the number of samples and β an hyper-parameter ∈ [0, 1]

which control how fast the effective number of samples grows as n increases. This loss function’s
main idea is to introduce a class weighting factor inversely proportional to the effective number
of samples to balance the output loss value as a model- and loss-agnostic method, formulated as

CB(p, y) =
1− β
1− βny

L(p, y), (3.1)

where ny is the number of samples for the class y, L(p, y) is the loss function for the predicted
class probability p.

In our proposal, the L(p, y) loss function is replaced by the focal loss (FL) [39], which
is an α-weighted method to address the class imbalance issue, defining each class impact in the
loss value with α ∈ [0, 1] for the target class y, and 1−α for the other classes, defined as follows

FL(py) = −(1− py)γ log(py), (3.2)

where py is the probability of the y class, (1− py)γ is a modulating factor with a γ ≥ 0 hyper-
parameter to determine how smoothly it affects the loss function, focusing in difficult samples.
Each py class probability at the exit of the models is represented by the sigmoid cross-entropy
loss denoted by

py =
1

(1 + exp−zy)
.
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In this regard, our implementation includes the base sigmoid cross-entropy loss, with the datasets
classes weighted by the focal loss, and defining each class impact by the class balanced loss,
formulated in next

CBfocal(z, y) = −
1− β
1− βny

(1− py)γ log(py), (3.3)

where z is the model’s predicted class probability.
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Chapter 4

Experimental Setup

The environment used to train and test each model was an online open cloud platform
for machine learning algorithms. This online platform provides a ready-to-use ecosystem with
libraries for data manipulation, data visualization, and the training process, among others. The
environment is available through a virtual machine configured with up to 13GB of memory, an
Intel Xeon@2.30GHz, and an NVIDIA GPU with 12GB of memory.

4.1 Datasets

Due to the fire and smoke recognition task’s complexity, mainly because of some simi-
larities with fire-like objects, a suitable dataset is required for training the proposed models. In
this regard, a fair trade-off between images with and without fire or smoke presence is needed to
carry out a good training process. Moreover, it has to be considered images with fire-like color
objects labeled as no-fire. Five datasets have been selected from the literature review to check the
model’s training process’s suitability. Four of the datasets have been used in previous works, and
another one has been recently compiled. Custom names have been given to the five previously
used datasets, FireSense4 [14], CairFire5 [24], FireNet6 [32], FiSmo7 [40], and FireSmoke8 [41].
All datasets were previously used and tested in their corresponding works, except for FiSmo,
which was only published and detailed as a fire and smoke labeled dataset. More details of each
image dataset will be discussed below.

The FireSense dataset is a video compilation that contains 27 videos for fire detection and
22 videos for smoke detection. From the fire detection videos are 11 videos with fire presence
and 16 videos without it. Moreover, the smoke detection videos are 13 videos with smoke
presence and 9 videos without it. From this compilation, just the fire detection videos were used.
4 Online available at <https://zenodo.org/record/836749> [Accessed: July, 2019]
5 Online available at <https://github.com/cair/Fire-Detection-Image-Dataset> [Accessed: July, 2019]
6 Online available at <https://github.com/arpit-jadon/FireNet-LightWeight-Network-for-Fire-Detection>, [Ac-

cessed: July, 2019]
7 Online available at <https://github.com/mtcazzolato/dsw2017> [Accessed: July, 2019]
8 Online available at <https://github.com/DeepQuestAI/Fire-Smoke-Dataset> [Accessed: July, 2020]

https://zenodo.org/record/836749
https://github.com/cair/Fire-Detection-Image-Dataset
https://github.com/arpit-jadon/FireNet-LightWeight-Network-for-Fire-Detection
https://github.com/mtcazzolato/dsw2017
https://github.com/DeepQuestAI/Fire-Smoke-Dataset
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Therefore, frame extraction has been performed for the training of the model. Just one frame per
second was obtained from these videos, getting a total of 906 frames.

For the CairFire dataset, the authors generated the dataset by selecting images from the
internet. They present images with different fire scenarios, indoor and outdoor, and different
illumination types as fire-like colors. The dataset is highly unbalanced and contains 110 images
with fire presence and 541 images without it.

The FireNet dataset is a recent compilation of challenging images with and without fire
presence. The authors complement the datasets used in previous works with internet images
to make them more diverse. They produce a dataset summarizing a total of 2,425 images for
training and 871 images for testing purposes.

In the FiSmo dataset, the authors also created a compilation of images from other datasets
obtaining 6,063 images. The source datasets used for FiSmo are in the context of the RESCUER
Project9. One of the subsets is called Flickr-FireSmoke, which has 5,556 images with fire
and smoke labels in total. Another subset is Flickr-Fire, which present balanced quantities of
images between fire and no-fire images from Flickr-FireSmoke, adding 281 other images with
the presence of fire. Additionally, from the BoWFire dataset [42], which is included in the
compilation, just the testing subset with 226 images is used as part of the dataset. This selection
is made because the training subset is meant to training a pixel-value fire recognition algorithm.
From FiSmo also, the contained subset of FiSmo (FiSmoB), which comprises 1968 images
equally balanced between the fire and no-fire label, was used independently. An augmented
version of FiSmo (FiSmoA) is also used, adding 485 black images labeled as no-fire to check out
the models’ response to this kind of augmentation. In addition to the balanced FiSmo version,
we have also used an augmented version of this subset (FiSmoBA), which replaces 98 no-fire
images for black images.

The FireSmoke dataset presents 3,000 internet compiled images for fire, smoke, and
neutral classes with 1,000 images each. The authors propose the use of 900 for training and
100 for testing of each class. Nevertheless, in this work, the entire dataset was used. The labels
details for each dataset are present in Table 1.

As all the datasets were compiled for a single label approach, the FireNet, FiSmo, and
FireSmoke datasets were selected to convert each label’s instance to a multi-label approach
given the total number of images and the complexity in the data representation for both fire
and smoke labels. In this regard, 16,140 images were reviewed and relabeled with four kinds of
labels: a) none, for those images with no fire neither smoke presence; b) fire, for those images
with only fire presence; c) smoke, for those images with only smoke presence; d) fire and
smoke, for those images with the presence of both fire and smoke. After images’ label checking,
the FireNet and FireSmoke datasets were highly unbalanced, merged into a new one named
9 Project FP7-ICT-2013-EU-Brazil - "RESCUER - Reliable and SmartCrowdsourcing Solution for Emergency

and Crisis Management"
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Table 1 – Quantity of images present in each dataset for fire recognition task.

Dataset Use Fire No-Fire Total

FireSense training 329 577 906
CairFire training 110 541 651
FireNet training 1,124 1301 2,425
FireNet testing 593 278 871
FiSmo training 2,004 4,059 6,063
FiSmoA training 2,004 4,544 6,548
FiSmoB training 984 984 1,968
FiSmoBA training 984 984 1,968
Total 4,441 6,070 10,511

Note: the fire and no-fire totals row differs in addition to each row value given the FiSmo subset
variations, from which a few images were added, as explained in section 4.1

Table 2 – Quantity of images present in each dataset used for fire and smoke recognition task.

Dataset Set Fire & Smoke Fire Smoke None Total

FireNet training 750 352 46 1,277 2,425
FireNet testing 55 537 1 278 871
FireSmoke training 677 247 862 914 2,700
FireSmoke testing 64 39 93 104 300
KutralSmoke training 1,427 599 908 2,191 5,125
KutralSmoke testing 119 576 94 382 1,171
FiSmo training 795 1,267 384 3,617 6,063
FiSmoA training 795 1,267 384 4,102 6,548
Total 2,341 2,442 1386 6,675 12,844

The FireNet, FireSmoke, and FiSmoA datasets are not considered in the total row because
FireNet and FireSmoke are contained in the KutralSmoke dataset, and FiSmoA is contained in
the FiSmo dataset, except for the none label’s difference.

KutralSmoke, summarizing 5,125 training and 1,171 testing images. Therefore, in this fire and
smoke recognition task, the FiSmo relabeled and KutralSmoke datasets were used in this task
with a total of 12,359 images. The label distribution for each checked and used dataset are shown
in Table 2, and image samples are shown in Figure 8.

4.2 Performance evaluation

Six different proposals were developed in this work, OctFiResNet, KutralNet, and three
portable versions, KutralNext and KutralNext+. Each proposal was developed for a different
purpose, along with this work. OctFiResNet was developed as the first lightweight ResNet-
inspired model to check the datasets’ complexity for use in the fire recognition task. KutralNet
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(a) (b)

(c)

Figure 8 – Data samples for each dataset used in this work. (a) FireNet image samples, (b) FiSmo
image samples, (c) KutralSmoke image samples. In the first row are the Fire and
Smoke labeled images, the second row are the fire labeled images, the third row are
the smoke labeled image, and in the bottom row are the none labeled images.
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was developed as a low-complexity model to recognize fire and later build more efficient models
using deep learning techniques as the octave and depthwise convolutions, with the inverted
residual block. Finally, the KutralNext and KutralNext+ proposals extend the KutralNet and
KutralNet Mobile Octave models, respectively, trained over the ImageNet dataset to be optimized
in a fire and smoke multi-label recognition task. All of the models were developed with the
Python programming language.

4.2.1 OctFiResNet proposal

For the OctFiResNet model’s training, the FireSense, CairFire, FireNet, and FiSmo
datasets were used. This model was implemented using the Keras framework with TensorFlow
as a backend for the neural network approach. The images were normalized to make their values
∈ [0, 1] before being processed by the model. The model was trained during 100 epochs with
Adam optimizer with Nesterov momentum with a learning rate of α = 0.0001.

Each dataset was used for training, validation, and testing the proposed model to achieve
the best possible dataset comparison. For example, using cross-dataset validation, the entire
FireSense dataset was used for training and, the entire Cairfire, FireNet, and FiSmo dataset were
used separately for validation. Therefore, each dataset obtains four different training results, one
by the split dataset for training and validation, and the other three using cross-dataset validation.

When the same dataset was used, it was split into two different subsets, one for training
and the other for validation. For the FireSense and FiSmo datasets, the 80% of the images were
used for training purposes and 20% for validation. For CairFire and FireNet datasets, the same
divisions made by the authors at [24] and [32] were used, respectively. In this regard, for the
CairFire dataset, 549 images were used for training and 102 images for validation. From the
training subset, 59 images had fire presence, and 490 did not have. The validation subset was
composed of 51 images with fire presence and 51 images without it. For the FireNet dataset,
the 70% was used for training, while the other 30% of the images was used for validation. For
statistical analysis, the algorithm has been executed ten times for each dataset.

4.2.2 KutralNet architectures

The first experiment with KutralNet aimed to define a baseline model and prove its
effectiveness to fire recognition. For this purpose, three different models were implemented for
comparing the baseline. The first model is a novel lightweight model for fire recognition, the
FireNet model [32], which is implemented in a Raspberry Pi as part of a fire alarm system. A
second model is a modified version of ResNet50 used with the transfer-learning technique for
training the classifier on the top of the network with fire and no-fire images. In this proposal
experimentation, OctFiResNet is also included to test its generalization capabilities, based on
the ResNet model, with few layers and octave convolutions. The final implemented model is
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our proposal, KutralNet, to address a computationally efficient and lightweight deep neural
network, balancing between the parameters and effectiveness. All of the models were trained
and evaluated over the FireNet, FiSmo, FiSmoA, FiSmoB, and FiSmoBA datasets and developed
with the PyTorch library. The trained and evaluated KutralNet is the baseline to build on the
portable approaches.

With the defined baseline, the next set of experiments aimed to reduce the operations
required for processing the images for fire recognition of the KutralNet model. To reduce the
operations required, techniques such as the depth-wise convolution presented with an inverted
residual block in [21] and the octave convolution presented by Chen et al. [22] were implemented
separately at first and mixed later to check their compatibility and efficiency. This reduction
results in three different models named: (i) KutralNet Mobile for the one where uses the
inverted residual block, inspired in MobileNetV2; (ii) KutralNet Octave is called the model
which uses the octave convolution with a reduction parameter α = 0.5 combined with the
depth-wise convolution, requiring fewer operations and space to store the model; and (iii)
KutralNet Mobile Octave, which uses the inverted residual block in combination with the
octave convolution using the depth-wise form.

All of the models’ training was performed during 100 epochs to choose the model
with the best validation accuracy. All of them were trained using cross-entropy loss and the
Adam optimizer with default parameters, except for KutralNet, which during the training stage,
presenting a learning rate variation from α = 10−4 to α = 10−5 on the epoch 85.

4.2.3 KutralNext methodology

The experimentation purpose of KutralNext is an extension of KutralNet where the
baseline architecture and the Mobile Octave variation were used to be pretrained using the
ImageNet dataset. Those models were chosen due to their obtained results in the fire recognition
task, named KutralNext and KutralNext+ for the baseline and the best portable variation to
be used in a fire and smoke recognition under a multi-label classification task. The JaukeNet
proposals were compared against previously developed models FireNet and FireDetection,
including the OctFiResNet proposal, using the relabeled version of FireNet, FiSmo, FiSmoA,
and KutralSmoke datasets. All previous models were developed in a lightweight scope to be
used in a single-label fire recognition task, with FireDetection as the only model previously used
for both fire-only and fire and smoke recognition tasks.

The experimental setup compares the fire and smoke recognition performance of the
KutralNext architectures against fire-specialized models. The first one compares the single-label
fire classification task performance, where each model must inference the presence or not of fire
in images. For this case, just the fire label is used from the image datasets, codifying the target
label y into a two components vector ∈ [0, 1]. When the first component is equal to 1, it indicates
no fire presence, and when the second component is 1, it indicates fire presence, being able to just
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one of them be equal to 1. The second experiment is the multi-label fire and smoke classification
task, where each model must inference the presence of fire, smoke, or none in images. For this
kind of task, the fire and smoke labels were used from each dataset, codifying the target label y
as vector ∈ [0, 1], with one component for each class. In this case, the target label can represent
the fire and smoke presence with both components equals 1, and both components equal 0,
to represent neither fire nor smoke presence. In both experiments, the behavior was checked
under two different data representations and distribution using a cross-dataset test, proving each
model’s robustness.

All of the images were preprocessed with a resize transformation to fit each model’s
input size and normalized with values ∈ [0, 1]. For each model, a different loss function was used
in order to follow their original implementation. For FireNet, OctFiResNet, and FireDetection, a
cross-entropy loss was used with a softmax activation in the single-label experimentation and a
binary cross-entropy loss with the sigmoid activation in the multi-label approach.



29

Chapter 5

Experimental results

The following sections are presented each experiment carried out to obtain efficient
models to fire and smoke recognition. In the first place, different datasets were analyzed with
OctFiResNet, a first lightweight model approach for fire recognition. A quantitative and qual-
itative analysis was performed in four previously used datasets, using the validation accuracy
obtained during the training of OctFiResNet. FiSmo was a remarkable, challenging dataset due
to its large number of instances, the contained subsets, and the smoke-labeled images. In the
second place, an deep learning model aims to be reduced in size and effectively recognize fire in
still images. In this regard, the KutralNet architectures were built as an efficient approach, with
a baseline convolution layers stack to reduce the mathematical complexity later using state-of-
the-art convolution techniques. Three portable models were developed from the combination
of the inverted residual block, the separable depthwise convolution, and the octave convolution.
The best portable model was named KutralNet Mobile Octave. The KutralNet architectures were
extended, used for fire and smoke recognition under a multi-label approach in the last place. For
this, the KutralNet and KutralNet Mobile Octave models were pretrained over ImageNet, naming
the models as KurtalNext and KurtalNext+. In this experimentation, a new loss function was
implemented to deal with the unbalanced datasets’ labels. A multi-label approach was used given
the existence probability of the fire or smoke in an image and because they are not mutually
exclusive classes.

Overall all the models were measured using the validation and testing accuracy, the
Receiver Operating Characteristic (ROC) curve, the area under the ROC curve, the floating-
point operations (flops), the number of parameters, and the time required to process the entire
test dataset used for each experiment. Those metrics were selected to compare each model
generalization and acquisition of the fire and smoke features under the same and different data
distributions. Each used model is represented in Table 3, by the computational cost in terms of
flops and parameters.
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Table 3 – The computational cost of each model used in this work represented with flops and
parameters ordered by parameters number.

ModelInputSize Flops Parameters

KutralNext84x84 76.85M 138.91K
KutralNext+84x84 24.59M 185.25K
FireDetection224x224 [29] 783.50M 335.53K
FireNet64x64 [32] 8.94M 646.82K
OctFiResNet96x96 928.95M 956.23K

Table 4 – Averaged OctFiResNet results with cross-dataset validation.

Dataset FireSense CairFire FireNet FiSmo

FireSense 100% ± 0.0% 82.87%± 0.89% 67.84%± 2.87% 69.71%± 3.21%
CairFire 83.43%± 2.08% 90.78% ± 1.61% 90.65%± 2.08% 79.59%± 1.21%
FireNet 85.43%± 2.29% 100%± 0.0% 95.47% ± 0.34% 81.90%± 0.69%
FiSmo 88.29%± 2.58% 94.09%± 0.50% 84.94%± 0.81% 87.44% ± 0.42%

Average results from 10 times of training execution obtained with cross-dataset validation. For
the results obtained in FireSense and FiSmo with themselves, a dataset split of 80%/20% was
used for training and validation, respectively. For the CairFire, 549 images were used for training
and, 110 images for validation. For FireNet a 70%/30% split was used. In rows are listed the
training used datasets, and in columns are the validation used datasets.

5.1 OctFiResNet: A first lightweight approach

The first obtained results are related to the OctFiResNet model and the FireSense,
CairFire, FireNet, and FiSmo datasets. The cross-dataset validation methodology aimed to define
the best dataset option to be used in fire recognition. An entire dataset was used for training
and a second one for validation to measure the generalization capability during the model’s
optimization. Additionally, the training and validation stages were also implemented using a
single dataset split for both stages to check the data representation’s complexity under the same
data distribution. The averaged results obtained by OctFiResNet on each dataset are shown in
Table 4.

After training, the overall obtained validation results show excellent performance in
each dataset, representing an interesting improvement by OctFiResNet, considering the dataset’s
original works’ previously reported outcomes. In the case of FireSense, an accuracy of 95.27%
has been previously reported by Dimistropoulos et al. [14] with their method analyzing the image
through sliding windows of 8x8 pixels to perform the classification. OctFiResNet was able to
improve the reported results with a 100% of validation accuracy for the 20% of the extracted
video frames. This remarkable accuracy can be originated from the high similarity between each
frame. Using CairFire, a modified version of the ResNet50 [24] obtained a 92.15% validation
accuracy against the 90.78% average validation accuracy of OctFiResNet. Concerning FireNet,
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Jadon et al. [32], and their lightweight model was able to obtain a 93.91% validation accuracy,
and OctFiResNet achieved a 95.47% average validation accuracy. Finally, for FiSmo, the authors
have only presented the dataset. To the best of our knowledge, no work has been presented yet
using this dataset. Therefore, no comparison has been performed. Regardless, the OctFiResNet
model obtains an average validation accuracy of 87.44% and a maximum of 88.38% for the 20%
of the dataset.

5.1.1 Discussion

Given the obtained results, OctFiResnet achieved high accuracy on datasets with a
reduced number of images. However, datasets with a greater variety of fire-like objects in the
images are more difficult to generalize. Furthermore, the reduced number of parameters does not
affect the overall performance negatively. From the addressed datasets, FiSmo presents a more
challenging number of images compared to the others, being suitable to be used alongside the
FireNet dataset for a fire classification task given its high volume data. Thus, the FiSmo dataset
is suitable given to the previously labeled smoke data, which can be used as an extension from
the fire recognition to a fire and smoke classification task.

5.2 KutralNet: An efficient fire recognition model

The following two subsections separate the KutralNet architectures’ experiments to
achieve a portable deep learning model for fire recognition. The first experimentation checks the
proposed baseline model’s feasibility to recognize fire, using few convolutional layers to process
the images. Experimental comparisons of KutralNet were made against the FireNet, OctFiResNet,
and a modified ResNet50 deep learning models. After check the baseline performance, the final
experimentation allowed to optimize the computational cost of the model, exploring the benefits
of different techniques presented in previous years as the inverted residual block, the depthwise,
and octave convolution. The different portable proposals got almost the same accuracy as the
baseline model with fewer parameters or flops, as shown in Table 3.

5.2.1 Baseline comparison

The baseline comparison was performed with three models to improve the proposal’s
results, focused on being lightweight and efficient. The first compared model was FireNet from
Jadon et al. [32], which comprises just a few convolution layers as part of a fire alarm system.
The second model was presented by Sharma et al. [24], where a pretrained ResNet50 makes
the feature extraction to be later analyzed by a multilayer perceptron with 4096 hidden units
and infer the corresponding label. Finally, the proposed OctFiResNet model is also used, as a
reduced version of ResNet50, presenting a few layers and replacing the vanilla convolution by
the octave convolution.
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The first results were compared with the models trained over the FireNet dataset, ob-
taining a validation accuracy of 93.83%, 96.02%, 95.34%, and 98.22% for FireNet, KutralNet,
OctFiResNet, and ResNet50, respectively. Correspondingly, the test accuracy results are 88.98%,
83.70%, 88.18%, and 89.44% for FireNet, KutralNet, OctFiResNet, and ResNet50. FiSmo
dataset was used to check the models’ generalization under a different data distribution during
training and validation. In general, the validation and testing accuracy were lower for all the
models, with KutralNet as the best model in both terms. Test results were obtained using the test
purpose FireNet’s subset.

A final experiment was to evaluate the models’ prediction with a black image as input.
All of the models trained with FireNet and FiSmo datasets miss-classified the black image with
the fire label. The FiSmo dataset was augmented to deal with this miss-classification issue,
adding 10% of the no-fire labeled images with black images. This kind of augmentation showed
useful improvements in training and testing stages, as can be observed in Table 5 and Figure 9c.
The most in-depth models outperform the FireNet model’s results, except for OctFiResNet,
which negatively affects test accuracy.

The test performances of each model trained with different datasets are shown in Figure 9.
As shown, comparing Figure 9b and Figure 9c, the black images added into the FiSmo dataset
showed a positive reaction for the ROC curve in most models. Regarding the AUROC index,
KutralNet and ResNet50 models present an improvement; for FireNet, a diminishment and
OctFiResNet remains almost the same. FireNet achieves the best value in all the datasets, but as
presented in Table 5 for FiSmo and FiSmoA achieves a low test accuracy.

To visualize the models’ comparison more straightforwardly, the bottom of Table 5
presents the validation accuracy, test accuracy, and AUROC index for each model trained with
different datasets averaged. Overall, KutralNet presents a better generalization during testing
than all the other models, achieving high performance with fewer parameters and operations.

The proposed KutralNet baseline accomplishes an interesting performance compared
with previous deep models for fire recognition. This model presents a few convolution layers
in order to acquire a feature representation of fire in images. A model with a few numbers of
layers consequently present a reduced number of parameters and operations required for this task.
The resultant baseline reduces 85% the parameters number and 92% the number of operations
required compared to the OctFiResNet model to process an image signal of 84x84 pixels in RGB
channels.

5.2.2 Portable versions

Once checked the KutralNet baseline architecture, the next experiment aims to reduce
its computational cost. For this purpose, the convolutional layers were modified from the
baseline, resulting in three different models to check the most efficient strategy. The first model,
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Table 5 – KutralNet baseline comparison results against previous fire recognition models.

DS Model Val. acc. Test acc. AUROC

Fi
re

N
et

FireNet [32] 93.83% 88.98% 94.63%
KutralNet 96.02% 83.70% 94.49%
OctFiResNet 95.34% 88.17% 94.31%
ResNet50 [24] 98.22% 89.44% 93.62%

Fi
Sm

o

FireNet [32] 84.50% 58.90% 96.60%
KutralNet 88.62% 74.63% 88.62%
OctFiResNet 87.96% 72.79% 84.28%
ResNet50 [24] 87.47% 40.53% 80.56%

Fi
Sm

oA

FireNet [32] 85.65% 59.93% 95.25%
KutralNet 89.54% 76.46% 92.69%
OctFiResNet 89.24% 66.93% 84.06%
ResNet50 [24] 92.06% 80.83% 94.00%

A
ve

ra
ge

FireNet [32] 87.99% 69.27% 95.49%
KutralNet 91.40% 78.26% 91.93%
OctFiResNet 90.85% 75.97% 87.55%
ResNet50 [24] 92.58% 70.26% 89.39%

KutralNet Mobile, replaces the baseline structure to get the inverted residual blocks with
depthwise convolution, as proposed in [21], simplifying the processing operations required.
The second model, KutralNet Octave, replaces the vanilla convolution from the baseline with
the octave convolution [22] for signal processing. The third model, KutralNet Mobile Octave,
implements a combination of previously mentioned techniques, the inverted residual block with
the octave convolution to replacing the baseline structure.

In the first place, the training was performed over FiSmo, achieving a validation accuracy
of 88.62%, 85.99%, 87.55%, and 87.39% by KutralNet, KutralNet Mobile, KutralNet Octave, and
KutralNet Mobile Octave, respectively. Additionally, the test accuracy obtained from the models
over the test FireNet’s subset was 74.63%, 67.28%, 72.33% and, 72.91%, respectively. All of the
obtained results are shown in Table 6 for each model trained over all the datasets. As same that
with the baseline, the black image test was carried out in order to check the reliability of features
obtained from the input signal. For this purpose, the balanced augmented version of FiSmo,
FiSmoBA dataset was used for training the model, getting the lowest miss-classification error
in all the trained models. Additionally, the models got ±1% of validation accuracy difference
compared with the balanced FiSmoB dataset. For the black image test, the KutralNet Mobile
with octave convolution got the lowest miss-classification rate with 10%, 30%, and 0% for
the FiSmo, FiSmoB, and FiSmoBA datasets, respectively. Overall, as shown in Figure 10, the
KutralNet Mobile Octave performs well in different variations of the FiSmo dataset. Additionally,
the AUROC index is even better than the baseline with the balanced version of the dataset
and the augmented balanced version. For the KutralNet Octave case, it performs better than
the Mobile Octave version with FiSmo and its augmented balanced version. Considering the



34

0% 20% 40% 60% 80% 100%

0%

20%

40%

60%

80%

100%

FireNet AUC=0.95
OctFiResNet AUC=0.94
ResNet50 AUC=0.94
KutralNet AUC=0.94

ROC curve in FireNet for Fire label

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

(a)

0% 20% 40% 60% 80% 100%

0%

20%

40%

60%

80%

100%

FireNet AUC=0.97
OctFiResNet AUC=0.84
ResNet50 AUC=0.81
KutralNet AUC=0.89

ROC curve in FiSmo for Fire label

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

(b)

0% 20% 40% 60% 80% 100%

0%

20%

40%

60%

80%

100%

FireNet AUC=0.95
OctFiResNet AUC=0.84
ResNet50 AUC=0.94
KutralNet AUC=0.93

ROC curve in FiSmoA for Fire label

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

(c)

Figure 9 – The models’ test results with FireNet-Test, which comprises 871 images for fire
classification. All of the models were trained under different datasets and tested over
the test subset of FireNet. The augmented dataset, FiSmoA, presents better results
than FiSmo for all the models, in exception for OctFiResNet. (a) ROC curve for the
models trained over the FireNet dataset. (b) ROC curve for the models trained over
the FiSmo dataset. (c) ROC curve for the models trained over the FiSmoA dataset. In
overalll, FireNet presents the best AUROC value but with low test accuracy. KutralNet
performs the second-best AUROC value achieving the best test accuracy, followed by
OctFiResNet and ResNet50.

trade-off between parameter numbers and operations required for processing the image, the
Kutralnet Octave presents a solution with fewer parameters than KutralNet Mobile Octave and,
conversely, requires more operations.

5.2.3 Discussion

As has been demonstrated, the proposed efficient KutralNet baseline can achieve a
competitive accuracy in both terms of validation and test accuracy than the modified version of
ResNet50. However, the KutralNet proposal was trained from scratch compared to ResNet50,
previously optimized with the ImageNet dataset to learn complex features, and then be used
with transfer-learning to fire recognition task. The ResNet50 model is a generic-purpose deep
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Table 6 – KutralNet portable versions results comparison.

DS Model Val. acc. Test acc. AUROC

Fi
Sm

o

KutralNet 88.62% 74.63% 88.62%
KutralNet Octave 87.55% 72.33% 93.20%
KutralNet Mobile 85.99% 67.28% 81.12%
KutralNet Mobile Octave 87.39% 72.90% 85.87%

Fi
Sm

oB

KutralNet 95.18% 75.32% 83.12%
KutralNet Octave 95.18% 67.74% 71.07%
KutralNet Mobile 94.67% 74.28% 89.77%
KutralNet Mobile Octave 93.65% 84.62% 92.55%

Fi
Sm

oB
A KutralNet 93.40% 78.07% 85.75%

KutralNet Octave 92.64% 81.63% 92.41%
KutralNet Mobile 93.91% 74.40% 84.02%
KutralNet Mobile Octave 93.91% 80.94% 90.53%

A
ve

ra
ge

KutralNet 92.40% 76.00% 85.83%
KutralNet Octave 91.79% 73.90% 85.56%
KutralNet Mobile 91.52% 71.99% 84.97%
KutralNet Mobile Octave 91.65% 79.49% 89.65%

learning model and presents a huge computational cost to obtain±2% difference in test accuracy.
KutralNet has shown to be able to generalize better than ResNet under a different data distribution,
surpassing the capability to obtain fire’s features.

The Octave and Mobile Octave versions performed comparable results against the
baseline in terms of validation accuracy and outperform test accuracy and AUROC values. It
was demonstrated that octave convolution achieves rich fire features, but it is volatile to the
variation in the input data due to the variation in AUROC terms between FiSmoB and FiSmoBA.
Nevertheless, the black image augmentation affected the Mobile Octave version’s generalization
negatively. However, it surpassed the baseline under a balanced configuration, requiring no
augmentation to perform well.

How it was proven, a previously optimized model use can increase the effectiveness
in any specific-task, given the prior complex learned features from a challenging dataset as
ImageNet. The next experiment addresses this pretrained model over KutralNet and KutralNet
Mobile Octave, given the seized results under an efficient scope. Additionally, the balanced data
issue is also addressed to take over a better training process.

5.3 KutralNext: Fire and smoke recognition

In the following section, a fire and smoke recognition problem is addressed under a
multi-label approach. For this purpose, the KutralNet and KutralNet Mobile Octave architectures
were pretrained over the ILSVRC 2012 dataset to learn useful filters and acquire images’ features
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Figure 10 – The models’ test results with FireNet-Test, which comprises 871 images for fire
classification. The models’ results are from the training with different datasets. The
FiSmo, FiSmoB, and the FiSmoBA with 98 no-fire images replaced with black
images. The augmented dataset, FiSmoA, presents better results than FiSmo for all
the models. (a) ROC curve for the models trained over the FiSmo dataset. (b) ROC
curve for the models trained over FiSmo balanced dataset. (c) ROC curve for the
models trained over the augment balanced FiSmo dataset. KutralNet performs the
second-best AUROC value achieving a better test accuracy, followed by OctFiResNet
and ResNet50.

to then be optimized against FiSmo, FireNet, and KutralSmoke datasets to conduct a comparison
of their suitability for single- and multi-label classification tasks. The models were named
KutralNext and KutralNext+, respectively. Different data distribution from more than one data
source is affordable to check the models’ generalization capability to acquire the features and
recognize the fire or smoke presence in an image. In this way, and as aforementioned, two
types of experiments were carried out. The first subsection explains the results obtained during
the single-label fire recognition task. The second subsection describes each model’s results in
recognizing fire and smoke in still images as a multi-label classification task. A third subsection
discusses how good were the models generalizing in both tasks and the benefits presented by the
KutralNext+ model. All of the models were compared using the following metrics: the accuracy
obtained during validation and testing, the receiver operating characteristic (ROC) curve, the
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area under the ROC curve (AUROC), the number of floating-point operations (flops) and, the
time required to process all the images in the correspondingly testing dataset. In Table 3 are
the cost of each model in terms of parameters and flops, Table 7 and Table 9 present the mean
training results obtained during 5 executions with their standard deviation values for the single-
and multi-label approaches, respectively.

5.3.1 Single-label classification: Fire recognition

The first experimentation set considers the single-label fire recognition task performance
KutralNext compared against state-of-the-art fire recognition deep learning models. Table 7
shown the training and testing statistics results, and in Table 9 are the performance of each
model over all the datasets with averaged and standard deviation values. Overall, for this task,
the KutralNext+ proposal generalized the best, and KutralNext achieved the best performance
acquiring fire’s features, both against previous fire recognition models. The KutralNext proposals
achieve the best results, being the most time inexpensive models in image processing.

From the results presented in Table 7, previous fire recognition models results are similar
with OctFiResNet as the best accurate model during validation followed by FireDetection and
FireNet, with FireDetection performing better than OctFiResNet in test accuracy. However,
KutralNext has proven to achieve the best generalization trained over different data distributions
as FiSmo and FiSmoA, where KutralNext+ obtain the best average validation and test accuracy.
In terms of time, OctFiResNet is the model that requires about 3 seconds to process the test
images, followed by FireDetection with 1.5 seconds, leaving KutralNext and KutralNext+
requiring 0.45 and 0.42 seconds, respectively. The FireNet model presents a lightweight approach
found in the literature, and it processes the test dataset 29% faster than KutralNext+ with 0.30
seconds. However, it presents a difference of 4.96% and 14.15% in validation and test accuracy,
respectively. All of the KutralNext models outperform all the previous fire recognition models in
the single-label approach, demonstrating an efficient computational cost model to fire recognition.
The best trained average KutralNext+ model is 0.29% and 5.51% higher than KutralNext, and is
1.83% and 2.65% higher than OctFiResNet in terms of validation and test accuracy, respectively.

Moreover, in Table 8, in terms of fire’s feature acquisition for each model, the FireNet
model obtain the best AUROC and precision among previous fire recognition models, followed
by OctFiResNet and FireDetection. In this regard, it was demonstrated that a few layers acquire
enough features to recognize fire. Nevertheless, they are not good enough in complex images
where the fire is present. The KutralNext proposal performs the best in both AUROC and
precision values for all the datasets, achieving 94.00% and 97.13%, respectively. KutralNext+
performs competitive results against KutralNext, with 93.64% and 97.03% for AUROC and
precision, respectively. In this regard has been demonstrated the trade-off between the model’s
depth and efficiency to fire recognition. Additionally, KutralNext+ presents a similar result under
a more efficient configuration, requiring less time to process an image.
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Table 7 – KutralNext training comparison results during 5 executions in the fire recognition task.

DS Model Val. acc. Test acc. Test (ms)

Fi
re

N
et

FireDetection [29] 94.99%± 0.69% 86.59%± 2.62% 1550± 26
FireNet [32] 93.59%± 0.45% 82.62%± 4.43% 301 ± 17
KutralNext 98.36%± 0.38% 79.06%± 4.61% 458± 27
KutralNext+ 98.40% ± 0.22% 89.53% ± 2.66% 414± 20
OctFiResNet 97.04%± 0.61% 82.73%± 6.12% 3191± 39

Fi
Sm

o

FireDetection [29] 90.77%± 0.21% 73.04%± 3.67% 1543± 24
FireNet [32] 87.63%± 0.32% 62.69%± 7.98% 302 ± 20
KutralNext 92.03%± 0.17% 77.43%± 2.60% 450± 20
KutralNext+ 92.44% ± 0.37% 80.62% ± 1.26% 428± 14
OctFiResNet 90.21%± 0.49% 70.70%± 5.05% 3156± 46

Fi
Sm

oA

FireDetection [29] 88.49%± 0.20% 71.23%± 5.22% 1531± 12
FireNet [32] 85.44%± 0.61% 64.20%± 2.76% 287 ± 21
KutralNext 90.72%± 0.09% 78.05%± 3.38% 443± 12
KutralNext+ 90.72% ± 0.09% 82.92% ± 2.57% 409± 11
OctFiResNet 88.53%± 0.47% 76.37%± 8.02% 3177± 34

A
ve

ra
ge

FireDetection [29] 91.42%± 0.37% 76.95%± 3.84% 1541± 21
FireNet [32] 88.89%± 0.46% 69.84%± 5.06% 297 ± 19
KutralNext 93.70%± 0.21% 78.18%± 3.53% 450± 20
KutralNext+ 93.85% ± 0.23% 84.36% ± 2.17% 417± 15
OctFiResNet 91.93%± 0.52% 76.60%± 6.40% 3175± 39

Interesting results were obtained over the black augmented FiSmo version, FiSmoA,
which improves FireNet, KutralNext, KutralNext+, and remarkably OctFiResNet in test accuracy
values. For the FireDetection model, the augmentation negatively impacts the performance
reducing a 2% test accuracy and increasing its deviation value compared with FiSmo. By a
counterpart, in the test performance results of Table 8, the AUROC and precision values of the
models trained with FiSmoA and the black images augmentation increase the performance for
all the models, resulting in a reduction of the standard deviation values.

A more detailed performance obtained over the datasets can be observed in Figure 11a
for the models trained over FireNet where KutralNext+ obtain a 97.59%, followed by KutralNext
with 94.18% AUROC index. It can be observed in the ROC curve that KutralNext performs well
at a low false-positive rate. The use of the FireNet dataset proves the model’s generalization over
the same data distribution. A different data distribution models’ behavior is achieved with FiSmo
and FiSmoA shown in Figure 11b and Figure 11c. In FiSmo, KutralNext keeps first place with a
92.44% of AUROC index, followed by KutralNext+ with a 90.57%. An even higher AUROC
value was obtained trained with the augmented version of FiSmo, where KutralNext achieves
first place with 95.39%, followed by our KutralNext+ model with 92.79%. In both datasets,
KutralNext achieves the best curve with low false-positive rates in terms of the ROC curve.
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Table 8 – KutralNext performance comparison during 5 executions in the fire recognition task.

DS Model AUROC Precision

Fi
re

N
et

FireDetection [29] 91.25%± 2.50% 93.79%± 1.06%
FireNet [32] 92.90%± 4.83% 94.78%± 3.66%
KutralNext 94.18%± 2.61% 95.60%± 0.77%
KutralNext+ 97.59% ± 1.05% 96.23% ± 1.02%
OctFiResNet 91.07%± 5.59% 91.85%± 3.32%

Fi
Sm

o

FireDetection [29] 81.16%± 3.81% 92.55%± 2.87%
FireNet [32] 86.44%± 3.35% 95.48%± 4.10%
KutralNext 92.44% ± 1.49% 97.22% ± 1.11%
KutralNext+ 90.57%± 2.00% 97.25%± 1.51%
OctFiResNet 80.03%± 5.01% 94.71%± 1.87%

Fi
Sm

oA

FireDetection [29] 83.02%± 6.79% 94.24%± 3.68%
FireNet [32] 92.35%± 1.37% 97.79%± 0.82%
KutralNext 95.39% ± 1.26% 98.57% ± 0.79%
KutralNext+ 92.79%± 2.22% 97.62%± 1.68%
OctFiResNet 92.09%± 3.22% 97.24%± 1.50%

A
ve

ra
ge

FireDetection [29] 85.15%± 4.37% 93.53%± 2.54%
FireNet [32] 90.56%± 3.18% 96.02%± 2.86%
KutralNext 94.00% ± 1.79% 97.13% ± 0.89%
KutralNext+ 93.65%± 1.76% 97.03%± 1.40%
OctFiResNet 87.73%± 4.61% 94.60%± 2.23%

5.3.2 Multi-label classification: Fire and smoke recognition

In this second experiment, we check out the performance in the fire and smoke multi-label
recognition task of our models’ proposals with two datasets used for training and one dataset
for testing. The training datasets were FiSmo and KutralSmoke, and the testing dataset was
KutralSmoke Test. With those datasets, the models’ were trained and compared with different
data distribution of the corresponding labels and checking its generalization. This fire and smoke
classification task analyzed each label separately under a multi-label approach due to the chance
of appearing the fire or smoke class in the same image. Table 9 shown the statistics results of
each model trained over all the datasets with averaged values for the validation and test accuracy,
and test time and Table 10 presented each model’s test performance. Our proposals are the best
in recognize fire and smoke, being the most time inexpensive models. The classification was
considered binary, considering fire, smoke, or both classes as a true label and none class as a
false label.

Table 9 shown the models’ training performance, where it can be observed that in average
validation accuracy, KutralNext performs the best with an 85.43%, followed by KutralNext+
with an 85.84% taking into consideration their deviation values. Different results were obtained
during testing, where KutralNext+ performs the best with the same and different data distribution
with an 81.53%, being better than KutralNext with 79.03%. In this regard, KutralNext+ surpasses
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Figure 11 – Single-label classification ROC curve mean tests for 5 executions for all the models
trained over FireNet, FiSmo and FiSmoA dataset. It can be observed that KutralNext+
performs the best under the same data distribution in the FireNet dataset (a), and
being competitive against KutralNext in different data distributions as the FiSmo
and FiSmoA datasets, (b) and (c), respectively.

the state-of-the-art fire recognition models, requiring less time in processing the test data images.

Now, in terms of time required to process the 1,171 testing images, OctFiResNet was the
most time-consuming, taking over 2.0 seconds, followed by FireDetection with 1.87 seconds.
For the KutralNext architectures, KutralNext+ is the model that requires more time with 0.61
seconds, leaving KutralNext as the model which requires less time with 0.41 seconds. FireNet is
the model that requires less time to process the images; nevertheless, it also presents the lowest
mean validation and test accuracy.

A general overview of each model in terms of AUROC and precision in the test dataset
is shown in Table 10. In the first place, for the fire label, KutralNext has shown the best average
AUROC value and OctFiResNet the best mean precision value in this multi-label test approach.
Considering the mean AUROC between both datasets, the KutralNext model obtains a 94.47%,
taking the first place, followed by KutralNext+ with 93.40%. In overall, all the models present a
good performance to detect fire in this approach. However, for the smoke label, a lower outcome
has been shown in AUROC and precision terms. KutralNext+ achieved a remarkable AUROC
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Table 9 – KutralNext training results during 5 executions in the fire and smoke recognition task.

DS Model Val. acc. Test acc. Test (ms)

K
ut

ra
lS

m
ok

e FireDetection [29] 80.95%± 0.92% 77.59%± 3.22% 1883± 81
FireNet [32] 78.85%± 0.46% 77.11%± 3.60% 339 ± 23
KutralNext 89.66%± 0.44% 86.70%± 2.02% 430± 21
KutralNext+ 90.46% ± 0.48% 88.08% ± 0.69% 603± 34
OctFiResNet 84.00%± 0.63% 79.03%± 4.58% 2040± 11

Fi
Sm

o

FireDetection [29] 77.18%± 0.99% 63.04%± 8.60% 1856± 99
FireNet [32] 74.70%± 0.66% 56.89%± 6.26% 335 ± 22
KutralNext 81.20% ± 0.74% 71.36%± 2.31% 424± 21
KutralNext+ 81.22%± 3.18% 74.98% ± 3.22% 624± 33
OctFiResNet 78.04%± 0.41% 56.69%± 2.38% 2046± 6

A
ve

ra
ge

FireDetection [29] 79.07%± 0.96% 70.32%± 5.91% 1870± 90
FireNet [32] 76.77%± 0.56% 67.00%± 4.93% 337 ± 23
KutralNext 85.43% ± 0.59% 79.03%± 2.16% 427± 21
KutralNext+ 85.84%± 1.83% 81.53% ± 1.96% 614± 33
OctFiResNet 81.02%± 0.52% 67.86%± 3.48% 2043± 9

value with 89.59% and precision of 56.27%, followed by KutralNext with 87.00% and 46.92%,
respectively, being the best model in comparison with previous extended models to acquire
smoke features and recognize it under a multi-label approach. All of the models have been shown
better outcomes trained over the same data distribution than a different data distribution.

Figure 12 shows the mean ROC values obtained for the models trained over all the
datasets to compare each models’ performance in terms of feature acquisition for each model. The
KutralNext proposals presented the best results for both classes from the used datasets, capable
of acquiring features at a low false-positive rate. Remarkable results were obtained for the smoke
label compared with previous models, as shown in Figure 12b and Figure 12d. Additionally,
KutralNext and KutralNext+ obtained the best results under a different data distribution as
the case for the FiSmo dataset. In this way, their implemented techniques efficiency has been
demonstrated because the models’ design was not meant to recognize smoke. Even so, it achieved
the best results in smoke class features.

5.3.3 Discussion

The KutralNext deep learning models proposal were capable of achieving a proper
performance for fire and smoke recognition as a single- and multi-label approach, compared to
previous deep learning models in the same approach. All of the models compared were designed
under a single-label approach and adapted to be used under a multi-label approach for this
research project. The FireDetection model was the only one designed to recognize fire and smoke
from images. All of the models previously used were designed to recognize fire only. However,
the output layer was successfully adapted for those models, demonstrated results obtained for
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Table 10 – KutralNext performance during 5 executions in fire and smoke recognition task.

DS Model AUROC Precision

Fire Label

K
ut

ra
lS

m
ok

e FireDetection [29] 88.72%± 4.04% 95.02%± 1.87%
FireNet [32] 94.18%± 1.68% 94.07%± 1.28%
KutralNext 96.96%± 0.49% 97.12% ± 0.80%
KutralNext+ 97.46% ± 0.43% 96.69%± 1.21%
OctFiResNet 94.84%± 2.67% 94.74%± 2.11%

Fi
Sm

o

FireDetection [29] 85.73%± 7.74% 92.61%± 4.77%
FireNet [32] 83.66%± 5.49% 90.74%± 3.48%
KutralNext 91.98% ± 2.97% 93.64%± 4.11%
KutralNext+ 89.35%± 2.03% 91.74%± 3.48%
OctFiResNet 84.25%± 3.61% 96.70% ± 2.03%

A
ve

ra
ge

FireDetection [29] 87.23%± 5.89% 93.82%± 3.32%
FireNet [32] 88.92%± 3.59% 92.40%± 2.38%
KutralNext 94.47% ± 1.73% 95.38%± 2.45%
KutralNext+ 93.40%± 1.23% 94.22%± 2.35%
OctFiResNet 89.54%± 3.14% 95.72% ± 2.07%

Smoke Label

K
ut

ra
lS

m
ok

e FireDetection [29] 70.78%± 3.84% 29.30%± 2.59%
FireNet [32] 72.22%± 1.55% 28.00%± 1.73%
KutralNext 91.74%± 1.23% 52.91% ± 3.82%
KutralNext+ 92.59% ± 1.77% 52.19%± 6.55%
OctFiResNet 76.42%± 6.25% 31.49%± 5.90%

Fi
Sm

o

FireDetection [29] 67.38%± 3.92% 33.06%± 3.21%
FireNet [32] 67.79%± 5.35% 35.01%± 6.30%
KutralNext 82.27%± 1.19% 40.93%± 2.41%
KutralNext+ 86.59% ± 3.22% 60.35% ± 12.66%
OctFiResNet 66.95%± 4.95% 29.75%± 3.68%

A
ve

ra
ge

FireDetection [29] 69.08%± 3.88% 31.18%± 2.90%
FireNet [32] 70.00%± 3.45% 31.51%± 4.02%
KutralNext 87.00%± 1.21% 46.92%± 3.11%
KutralNext+ 89.59% ± 2.50% 56.27% ± 9.60%
OctFiResNet 71.69%± 5.60% 30.62%± 4.79%
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Figure 12 – Multi-label ROC curve mean performance for each model trained over different data
distribution datasets. (a) and (b) present the models’ performance trained over the
KutralSmoke dataset. (c) and (d) present the models’ performance trained over the
FiSmo dataset. (a) and (c) show the fire label. (b) and (d) show the smoke label. The
JN initials correspond to KutralNext. In (a) and (b) the KutralNext+ model achieves
the best performance under low false positive rate. In (c) and (d) the KutralNext and
KutralNext Mobile models, respectively achieves the best performance at low false
positive rate.

the fire label. The central aspect of addressing a multi-label approach in still images is that
fire or smoke can be present separately, together, or not to be in the image. In this regard, the
multi-label approach could be suitable for an early alert system to measure the fire’s magnitude.
This magnitude could be translated from the inference of each label present in the image. When
only the smoke label was detected, it could be an early stage of the fire. When just the fire label
was detected, it could be a fire of minor intensity. Alternatively, if both fire and smoke labels
were present, a more extensive fire was detected.

Each proposed and implemented model was compared in terms of validation, test accu-
racy, ROC curve, area under the ROC curve, precision, number of parameters and flops, and time
required to process the test images. With those metrics, the generalization, feature acquisition
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capability, mathematical complexity, and storage size required were analyzed by each model.
Hereof, the final optimized proposal to fire and smoke recognition achieved an efficient design
with 138.9K parameters, and 76.9M flops for KutralNext, and a 68% flops reduction achieved by
KutralNext+ with 24.6M flops. KutralNext+ performed the best generalization with an 84.36%
average test accuracy in the single-label fire recognition task. Thus, it achieves the second-best
in AUROC and precision with 93.65% and 97.03%, leaving KutralNext as the best acquiring fire
features with 94.00% of AUROC and 97.13% of precision. Again, KutralNext+ achieve the best
generalization, but this time in the multi-label fire and smoke recognition task with an 81.53%
average test accuracy. In terms of fire feature acquisition, KutralNext got the best with 94.47% of
AUROC index followed by KutralNext+ with 93.40%, in precision, KutralNext and KutralNext+
obtained a 95.38% and 94.22%, respectively. OctFiResNet achieved the best precision with
95.72% but presented a low generalization with 67.86% average test accuracy. KutralNext+ got
the best AUROC and precision values for the smoke label with 89.59% and 56.27%, respectively,
followed by KutralNext. In this way, KutralNext+ achieved the best test metrics, acquiring both
fire and smoke features in a better way, being suitable for portable device implementations.

The results obtained highlight the importance of using a pre-trained model with ILSVRC
2012 [37] over one trained from-scratch. This benefit was demonstrated by the KutralNext+
model’s performance, from which the pre-trained versions perform significantly better than
the one from-scratch version in the single-label fire classification task with a 5.10% more in
an average test accuracy. Additionally, present 4.05% less mean standard deviation. During
the efficient models’ training over the ILSVRC 2012 dataset, the validation accuracy was not
appropriate to classify the 1000 contained classes. Nevertheless, the optimized parameters
obtained during the training of our efficient models, KutralNext and KutralNext+, were enough
to obtain better performance for both fire and smoke recognition task-specific model architecture
design. These from-scratch results were not included in this research. However, this aspect has
been widely demonstrated [43]. Additionally, the portable version with the inverted residual
block and the octave convolution methods reduced the model’s flops. It improved accuracy in
single- and multi-label fire and smoke recognition tasks, suitable for a portable device at a high
frame rate. Thus, our portable proposal is suitable for a fire detection vision-based system for
incidents with fire or smoke presence.

The only concern encountered in this research, is the unrelated values of flops and the
time required by each model. This issue is not related to the model or its techniques, but it
is related to the PyTorch library10. Another considerable aspect of time is in the multi-label
problem with the label preparation, which requires a few steps of encoding the classes before
being processed by the model. Thus, the time issue can be solved for a final portable detection
system migrating the library and implementing a more specific label codification system.
10 Some users reported the slow implementation in the depthwise convolution using CUDA 32 bits floating-point

operations to the PyTorch repository <https://github.com/pytorch/pytorch/issues/18631>

https://github.com/pytorch/pytorch/issues/18631


45

A brief qualitative analysis from true-positive, false-positive, true-negative, and false-
negative cases obtained from the KutralNext+ model was carried out for both fire and smoke
labels.

From a total of 16 samples illustrated in Figure 13, consider the four different cases for
both labels. from top to down and from left to right, the cases are TP, FP, TN, FN. In the rows
are the fire cases and in the columns the smoke cases.

In the fire cases, the model can recognize the fire blurred by the smoke with different
densities. Darken scenarios mean no much difference to detect fire features. In terms of smoke
features, it can be observed that the model recognizes smoke texture. However, darken scenarios
and color reflection over the smoke remains a challenge.
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Figure 13 – Here are shown predicted KutralSmoke test sample images processed by KutralNext+
trained over FiSmo. From top to down and from left to right are the true-positive,
false-positive, true-negative, and false-negative cases for each label. Each row is
each fire case, and each column each smoke case.
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Chapter 6

Conclusion

Fire disasters may lead to massive losses affecting in an environmental, social, and
economic way, caused by natural or human causes. Hereof, an early detection system is affordable
to manage this kind of accident, reducing the blazes’ affected area. In this regard, a deep learning
model for fire and smoke recognition under an efficient and reduced size scope was developed in
this work. The model’s development aims to be used on constrained-hardware devices such as
alarm, video surveillance, or even to add fire recognition capability to robotic systems or any
other mobile devices. Thus requiring less storage space, an efficient model can also be executed
under a low computational resource setup. Ensure a real-time processing algorithm with high
accuracy is challenging for deep learning due to previous state-of-the-art generic-purpose models
that are mathematically complex designed to recognize a higher amount of classes.

For this work purpose, a study about the current fire and smoke recognition algorithm and
novel techniques that optimize the models’ performance, such as octave and separable depthwise
convolution and the inverted residual block. Once reviewed the literature, a dataset analysis was
carried out, proposing the first lightweight approach for fire recognition named OctFiResNet. The
CairFire, FireSense, FireNet, and FiSmo datasets were checked using cross-dataset validation.
OctFiResNet performed better results than previous approaches using those datasets. In this
way, it demonstrated that FiSmo and FireNet datasets are suitable options to be used in a fire
and smoke classification task given the challenging fire scenarios and the smoke labeled images.
Those datasets allowed the fire recognition model’s main architecture development, which fits
the defined scope of reduced size and computational cost for this work. The KutralNet proposal
was able to perform better than previous models, proving the effectiveness in recognizing fire.
Furthermore, it was optimized with novel deep learning convolution methods, with KutralNet
Mobile Octave as the best portable model in this task. A final proposal with those models
was completed, named KutralNext and KutralNext+. Both models were trained under more
complex representation data features in the ImageNet dataset to be optimized with the fire and
smoke labeled datasets. A novel approach for fire and smoke recognition was proposed with
138.9K parameters, and 76.9M flops, with an efficient model developed in this work. KutralNext+
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considerably reduces the number of flops to 24.6M, achieving the best performance with 84.36%,
and 81.53% mean test accuracy in the fire, and fire and smoke recognition tasks, respectively.
Additionally, it comprises 97% fewer flops, being 16% more accurate during testing in the fire
and smoke recognition than FireDetection hence is executed 4x faster with better generalization.

6.1 Future works

As future works, a variety of further improvements can be addressed. In terms of datasets,
use augmentation techniques for training a more robust model capable of generalizing better
in challenging scenarios, even more for the smoke label. A Generative Adversarial Network
approach [44] could be implemented to address this, or a custom learned augmentation technique
proposed by Cubuk et al. named Autoaugment [45]. In terms of the architecture, it can be
improved using different activation or loss functions. An additional test must be addressed,
considering the real-time execution performance in an embedded system such as a Raspberry
Pi without GPU acceleration. Furthermore, an extension of this work is to be used in detection
using a bounding box approach.
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