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Abstract
Reinforcement learning refers to a machine learning paradigm in which an agent interacts with
the environment to learn how to perform a task. Many times, learning is affected by the char-
acteristics of the environment and the way the agent perceives it. These characteristics may
change over time or be affected by outer disturbances not controlled by the agent. Furthermore,
discrete representations of the environment allow the learning to be fast, and the algorithms are
more straightforward to learn the task. However, the information is lost during discretization
process. Moreover, in continuous spaces, the agent takes too long to find optimal actions. In-

teractive Reinforcement Learning is an approach in which an external entity helps the agent
to learn through feedback. There are also reliable approaches, such as Robust Reinforcement

Learning, that allow the agent to learn a task regardless of disturbances in the environment.
In this dissertation, we propose two approaches to tackle these difficulties. First, we present
Interactive Reinforcement Learning in problems where states and actions are continuous. Next,
we address policy-gradients methods for Robust Reinforcement Learning. Finally, we propose
Robust Interactive Reinforcement Learning, an approach that includes advice in scenarios where
the environment is dynamic. We propose algorithms that combine learning under Interactive
Reinforcement Learning with the Robust Reinforcement Learning approach. To evaluate our
proposal, we implement the dynamic version of the Robust Reinforcement Learning task, where
the characteristics of the environment change in each episode. Our results show that the proposed
approach allows an agent to complete the task satisfactorily in a dynamic, continuous action
state domain. Moreover, experimental results suggest agents trained with our approach are less
sensitive than interactive reinforcement learning agents in front of changes in the characteristics
of the environment.

Keywords: Dynamic Environment. Interactive Reinforcement Learning. Machine Learning.
Policy-Shaping. Robust Reinforcement Learning.
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Resumo
A Aprendizagem por Reforço refere-se a um paradigma de aprendizado de máquina, onde, um
agente interage com o ambiente para aprender como realizar uma tarefa. Muitas vezes, a aprendi-
zagem é afetada pelas características do ambiente e a forma como o agente percebe-o. Aquelas
características podem mudar sobre o tempo ou ser afetadas por perturbações externas que o
agente não pode controlar. Por outro lado, as representações discretas do ambiente permitem
que a aprendizagem seja rápida, e os algoritmos sejam simples parra desarrolhar uma tarefa.
No entanto, a informação perde-se durante o proceso de discretização. Além disso, em espaços
contínuos, o agente demora muito para encontrar as ações ótimas. O aprendizado por reforço
interativo é uma abordagem na qual uma entidade externa ajuda aprender ao agente através do
feedback. Também existem abordagens robustas, como a Aprendizagem por Reforço Robusto,
que permitem ao agente aprender uma tarefa, independentemente das perturbações produzidas
no ambiente. Nesta dissertação, propõe-se duas abordagens para enfrentar essas dificuldades.
Primeiro, apresenta-se a Aprendizagem por Reforço Interativo em cénarios onde os estados e as
ações estão em espaços contínuos. Logo, os métodos de gradientes de políticas para a Apren-
dizagem por Reforço Robusto são abordados. Por fim, propõe-se a Aprendizagem pr Reforço
Interativo Robusto, uma abordagem que inclui informação externa em cenários donde o ambiente
é dinâmico. Propõe-se algoritmos que combinam a Aprendizagem por Reforço Interativo com a
abordagem de Aprendizagem por Reforço Robusto. Para avaliar a proposta, implementa-se a
versão dinâmica da tarefa do balanceamento de carrinho de pólocart-pole balancing, onde as
características do ambiente mudam em cada episódio. Os resultados mostram que a abordagem
proposta permite que um agente conclua a tarefa satisfatoriamente em um domínio de estado
de ação dinâmico e contínuo. Além disso, os resultados experimentais sugerem que os agentes
treinados com a abordagem proposta são menos sensíveis do que os agentes de Aprendizagem
por reforço Interativo diante de mudanças nas características do ambiente.

Palavras-chave: Ambientes Dinâmicos. Aprendizagem de Maquina. Aprendizagem por Reforço
Interativo. Aprendizagem por Reforço Robusto. Policy-Shaping.
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Resumen
El Aprendizaje por Refuerzo se refiere a un paradigma de aprendizaje de maquina, en el cual,
un agente interactúa con el ambiente para aprender como realizar una tarea. Muchas veces, el
aprendizaje se ve afectado por las características del entorno y la forma en que el agente lo
percibe. Estas características pueden cambiar con el tiempo o verse afectadas por perturbaciones
externas no controladas por el agente. Por otro lado, las representaciones discretas del ambiente
permiten que el aprendizaje sea rápido, y los algoritmos sean simples de implementar en el
desarrollo de la tarea. Sin embargo, la información se pierde durante el proceso de discretización.
Además, en espacios continuos, el agente toma bastante tiempo encontrando las acciones optimas.
El Aprendizaje por Refuerzo Interactivo es un enfoque en el que una entidad externa ayuda al
agente a aprender a través de la retroalimentación. También existen enfoques robustos, como
Aprendizaje por Refuerzo Robusto, que permiten al agente aprender una tarea independientemen-
te de las perturbaciones que modifican el ambiente. En esta disertación, se proponen dos enfoques
para abordar estas dificultades. Primero, se presenta el Aprendizaje por Refuerzo Interactivo
en problemas donde los estados y las acciones son continuas. A continuación, se aborda los
métodos de gradientes de políticas para el Aprendizaje por Refuerzo Robusto. Finalmente, se
propone el Aprendizaje por Refuerzo Interactivo Robusto, un enfoque que incluye información
externa en escenarios donde el ambiente es dinámico. Se proponen algoritmos que combinan el
Aprendizaje por Refuerzo Interactivo con el enfoque de Aprendizaje por Refuerzo Robusto. Para
evaluar la propuesta, se implementa la versión dinámica de la tarea cart-pole balancing, donde
las características del entorno cambian en cada episodio. Los resultados muestran que el enfoque
propuesto permite a un agente completar la tarea satisfactoriamente en un dominio de estado de
acción dinámico y continuo. Además, los resultados experimentales sugieren que los agentes
entrenados con el enfoque propuesto son menos sensibles que los agentes de Aprendizaje por
Refuerzo Interactivo frente a los cambios en las características del ambiente.

Palabras-clave: Ambientes Dinámicos. Aprendizaje de Maquina. Aprendizaje por Refuerzo
Interactivo. Aprendizaje por Refuerzo Robusto. Policy-Shaping.
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Chapter 1

Introduction

In this chapter, we introduce the problem that is addressed in this work. First, we present
the characterization of the problem and motivation. We explain the context and issues related to
Reinforcement Learning, as well as possible successes found in the literature. Then, we present
the general objective and the specific objectives that are carried out to solve the problem.

1.1. Problem Characterization

Reinforcement learning (RL) is a learning approach that tries to solve the problem of an
agent interacting with the environment to learn the desired task autonomously. The agent must
be able to sense a state from the environment and take actions that affect it to reach a new state.
For each action taken, the agent receives from the environment a reward signal that it tries to
maximize throughout the learning [1]. Thus, the agent learns from its own experience, taking
actions, and discovering which one produces the greatest reward. The agent does not learn the
policy directly, but it can approximate it, storing values for each state and each action. Many RL
algorithms approximate the value function, which maps state or state-action pairs in an expected
reward amount. Temporal-difference (TD) learning [1] is a class of methods to adjust the state
value function. The conventional algorithms from TD learning are Q-learning [4], and SARSA
algorithm [5], which update the action-value function [1], and the actor-critic, that represents the
policy (actor) independent of the state-value function (critic) [6, 7].

One RL problem, which is still open, is the time spent by an RL agent during learning
[8]. To leave an agent finds a proper policy, requires excessive time, mainly due to a complex or
large space of states and actions. Moreover, the agent may explore different regions of space
to find the state-action pair that produces a better reward [9]. To overcome this problem, an RL
agent may be guided by a trainer to carry out the task more rapidly. Interactive Reinforcement
Learning (IRL) is an approach that allows an external trainer to perform a feedback process with
an RL agent.

In this process, the trainer advises the RL agent leading to improve the performance of the



2

task and speed up the learning. Allowing to reduce the search space and to learn autonomous the
problem faster compared to an RL agent performing exploration [8]. Thomaz and Breazeal [10]
present the first IRL approach where enables a human trainer to provide positive and negative
rewards and anticipatory guidance to performs future actions. First, they experiment whether
the human reward is compatible with the reward signal in the autonomous RL. In their work,
they show that the users (humans) guide the agent towards actions and give anticipatory rewards
but provides more positive than negative feedback. In other work, Thomaz and Breazeal [9]
involve a boolean feedback signal by the trainer when the agent needs it. The UNDO behavior is
implemented to changing the selected action in some step.

In many RL implementations, the space of states and actions is usually considered a
discrete domain [11, 1, 12] or a discrete representation (coarse coding or function approximation)
[13, 14, 8]. Still, in real-world applications, this is more complex and challenging to represent.
A priori discretization prevents to identify which regions of space are more important than
others. Moreover, information is lost, and it is difficult to learn from past experiences [15, 16].
Nevertheless, a very fine discretization can be considered to capture all the possible information.
However, this leads to slow learning by considering spaces with many elements.

Doya [17] proposes an approach of reinforcement learning in continuous spaces of time,
states, and actions. Besides, he suggests the continuous actor-critic method and a gradient approx-
imation to performs the policy. In this work, the author uses Normalized Gaussian Networks [18]
as a function approximation, and implements her approach in two tasks, swinging up a pendulum
and the cart-pole balancing. The results show that continuous actor-critic has an advantage
over the discrete one; it is more efficient and stable. Also, agents learn in fewer iterations. Van
Hasselt and Wiering [16] propose the Continuous Actor-Critic Learning Automaton (CACLA)
to carry actions and states in continuous spaces, an algorithm relatively simples o implement
and low computational requirements. They use Neural Networks as function approximation and
implement their algorithm in the tracking and the cart-pole balancing task. They demonstrate
that their algorithm performs better than other algorithms, uniquely combining it with Gaussian
exploration.

It is clear that during learning, the agent performs actions that modify the environment.
Depending on how it explores, the agent can obtain samples of the states to improve its policy
and better perform the task in the future. One of the main problems is when the environment
is not controlled, i.e., it is not guaranteed that the environment is kept in constant condition,
avoiding some external noise input. For example, the wear of a wheel or its friction may vary over
time. In a maze, the walls could change position, eliminating paths that the agent learned in the
past. Therefore, it is essential to develop robust algorithms that help to overcome uncontrollable
disturbances. One of the most relevant works is from Morimoto and Doya [19], where propose
Robust Reinforcement Learning, an approach capable of resisting the disturbances present in
the environment based on the control H∞ paradigm. They implement their methodology in
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the cart-pole balancing task, where they change the physical parameters of the cart-pole after
training. Their experiments show a poor performance during the training; however, the agent is
more robust in front of the change of the physical parameters.

In this research, we propose an Interactive Reinforcement Learning methodology to act
in scenarios where states and actions belong to continuous space, and the environments have
dynamic features independent from the performance of the agent. To evaluate this methodology,
we implemented the classic control problem, cart-pole balancing task, with the characteristics
necessary to assess the performance of the method. In this research, we propose an Interactive
Reinforcement Learning approach to act in scenarios where states and actions belong to con-
tinuous space, and the environments have dynamic features independent from the performance
of the agent. Besides, we propose a group of algorithms to address our propose and help in the
implementation. To evaluate this approach, we implemented the classic control problem, cart-
pole balancing task, with the characteristics necessary to assess the performance of the method.
To determine the performance of the proposal, we compare the curves of the average collected
reward and the average number of steps per episode through a graphical method (observing the
trajectories) as commonly performed in the Reinforcement Learning area [1, 17, 20, 14, 8, 21].

1.2. Objectives

This work aims to propose a robust approach to implement Interactive Reinforcement
Learning in problems where states and actions are in a continuous domain and a dynamic
environment so that external factors to the environment are not influential during learning. The
approach will be efficient if: it can accelerate the training of an agent that faces different types of
settings, and the agent is robust in front of the change of the characteristics of the environment.

We highlight the specific objectives:

1. To propose an algorithm to implement Interactive Reinforcement Learning in scenarios
where states and actions are continuous.

2. To research about Robust Reinforcement Learning approach based on dynamic environ-
ments.

3. To include the concepts of Interactive Reinforcement Learning in dynamic environments
based on the approaches of state of the art.

4. To propose an Interactive robust reinforcement Learning algorithm to learn about dynamic
environments.

5. To verify that the proposed approach is effective in a classic control benchmark.
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1.3. Structure of the Document

This master dissertation is organized in five chapters. In Chapter 2, we describe the
theoretical framework from reinforcement learning for the understanding of this work and the
related approaches. In Chapter 3, we present a way to implement Interactive Reinforcement
Learning for continuous spaces. We also show the proposal Robust Reinforcement Learning
approach with policy gradients, and Robust Reinforcement Learning that including advice from
an external trainer. The experimental setup, results, and discussion are presented in Chapter 4.
Finally, in Chapter 5, we describe our main conclusions of this work and suggestions for future
work.
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Chapter 2

Theoretical Framework and Related
Approaches

2.1. Reinforcement Learning

Learning, as a pattern of human and animal behavior, is the process of modification in
stimulus-response relations is developed as a consequence of interaction with the environment,
via the senses [22]. An approach based on learning is appropriate when the environment is wholly
unknown, or it is not available at the moment of designing a solution; this provides autonomy to
an organism.

It is generally agreed that learning involves a relatively permanent change in behavior
due to experience, reward, and punishment. It is a consequence of the law of reinforcement,
an essential principle in all learning theories [23, 24]. Reinforcement learning (RL) [1] is a
learning approach that allows autonomous agents to learn new skills, using the reaction from the
environment to an action. The main idea is trying to select actions to observe what situations
occur in the environment. If an action produces a favorable reaction, the organism trend to apply
this behavior again. Otherwise, the tendency is to avoid such behavior in the future [24]. The RL
problem is reduced to learn how to select optimal actions to be performed in each situation to
reach a given goal [25].

2.1.1. Elements of Reinforcement Learning

Besides the agent and its environment, exist fourth main elements can be identified in a
Reinforcement Learning task: a policy, a reward function, a value function, and a model of the
environment.

A policy defines the way the agent behaves at a specific time. Roughly speaking, the
policy is a process that associates the perceived states and the actions taken in those states. In
learning theory and psychology, this corresponds to the stimulus-response rules. A policy is the
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core of the reinforcement learning agent in the sense that it is enough to determine the behavior
[1].

A reward function defines the aim of a reinforcement learning problem. It associates each
perceived state (or state-action pair) of the environment to a numerical value that determines the
favorable and unfavorable of that state. The only objective from the reinforcement learning agent
is to maximize the reward received in the long run. In biological organisms, the reward can be
related to pleasure or pain.

A value function is long-term desirability that indicates how good is the state concerning
the goal. Therefore, starting from an anyone state, the value is the accumulative reward over the
future an agent can receive [1].

A model is something that imitates the behavior of the environment. It is how the reactions
to the stimulus given by an external agent are represented [24]. For instance, given a state and an
action, the model must predict the next new state and the new associated reward.

2.2. Reinforcement Learning Framework

Reinforcement learning is a learning approach that involves an autonomous agent learning
from interactions with its environment to achieve the goal [1]. The agent must be able to
learn from its own experience selecting actions that affect the environment and, with these
actions, reach new situations to the agent. In this approach, the learning agent receives from its
environment numerical reward information from the environment that attempts to maximize [26]

The agent and the environment interact at each of a sequence of discrete time-step
t = 0, 1, 2, .... At each time-step, the learning agent receives a representation of the state of the
environment xt ∈ X , and of the action selected by the agent ut ∈ U(xt), where X is a set of the
all possibles states, and U(xt) is a set of the actions available in the state xt1. Eventually, as a
result of performing an action, the agent receives a scalar reward rt+1 ∈ R and reaches a new
state xt+1 [1]. Fig. 1 shows the diagram of the interaction between the agent and the environment
in the context of RL.

At each time-step, the agent implements relations between the states to probabilities to
select each possible action. These relations are called the agent policy and denoted by πt, where
πt(ut|xt) is the probability to select ut given the current state xt at time t. RL method specifies
how the agent change the policy as consequence of its experience. Thereby, the goal of the RL
agent is to approximate a function π : X × U −→ (0, 1) such that maximizes the total amount
of reward it receives over the long run.
1 The nature of the sets is not specified to generalize the methodology to sets with more complex characteristics.
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Figure 1 – Interaction between the agent and the environment in the Reinforcement learning
context. Figure adapted from Sutton and Barto [1].

2.3. Markov Decision Process

Reinforcement learning problem can be easily described using a Markov Decision
Process (MDP). An MDP is specified by the tuple < X,Ux, f, ρ > where [20]:

X is a set of the states and Ux is a set of actions available in the state x2.

f is the transition function, f : X × U −→ X , that gives the next state given the action
selected and the current state.

ρ is the reward function, ρ : X × U × X → R, this function evaluates the immediate
performance of the action selected.

In an MDP, as a result of selecting an action in the current state, the next state is
determined by a transition probability, and a reward amount is received [27]. Thus, the dynamic
system is wholly determined when the current state is known; besides, the state maintains the
Markov property.

The action ut taken in the state xt is selected following the policy π. The policy can be
either deterministic or stochastic: in deterministic case, the policy is determined by a function
π : X −→ U that maps the action ut in function of state xt. In stochastic case, the policy is a
probability density distribution function π : X × U −→ (0, 1), therefore, the action ut is drawn
aleatory from π given the current state xt.

2.3.1. Task and Return

Solving an MDP implies finding the policy that maximizes an optimality criterion, in
particular, maximizing an expected return [28]. The return, Rt, can be defined as a function of
a reward sequence, rt+1, rt+2, rt+3, ..., received at time t. In a particular case, the return can be
2 The sets X and Ux can be arbitrary finite or countably infinite, discrete or continuous sets [27].
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defined as the accumulated sum of the reward sequence [1]:

Rt = rt+1 + rt+2 + rt+3 + · · ·+ rT , (2.1)

where T is a final time-step. Although the criterion of the expression (2.1) is valid, trying to
maximize Rt could converge to infinity in scenarios where the agent-environment interaction
does not end naturally (T −→∞). The corresponding tasks are referred to as continuing task,
when the interaction process goes on continually without limit [1]. Eventually, in episodic task,
the agent-environment interaction is performed in finite sequences of steps called episodes. Each
episode ends in a terminal state and consequently restarts to a standard state or to a random state
defined by a distribution of initial states [29].

A criterion based in discount is the most commonly used; thus, the agent tries to select
actions, so that maximize the cumulative sum of discounted rewards received over the future:

Rγ
t = rt+1 + γrt+2 + γ2rt+3 + · · · =

T∑
k=0

γkrt+k+1,

where γ is a parameter called the discount rate, 0 < γ ≤ 1, and T is the horizon, including the
possibility T =∞3.

2.3.2. Value Function and Bellman Equations

In several MDP algorithms, optimal policies are computed by learning value function. A
value function represents an estimate of how good is the agent to perform a particular action in
that state, expressed in term of expected return [30].

The state value function of x, under all the actions, is the expected return of the discounted
sum starting in the state x an following a policy π. Formally we can defined it by [1, 30]:

V π(x) = Eπ

[
∞∑
k=0

γkrt+k+1

∣∣∣∣xt = x

]
, (2.2)

where Eπ[·] denotes the expected value given that the agent follows the policy π4.

Similarly, it is defined as a action-value function as the value of taking action u in the
state x under the policy π. Roughly speaking, it is the expected return starting from state x,
taking action u and following the policy π [1]

Qπ(x, u) = Eπ

[
∞∑
k=0

γkrt+k+1

∣∣∣∣xt = x, ut = u

]
. (2.3)

In addition, the value functions satisfy a recursive property. The expression (2.2) can be defined
recursively in terms of the so-called Bellman equation [1, 31]. It is denoted as the expected return
3 only in episodic task, it is accepted γ = 1.
4 A summation or integrals define the expected value according to the nature of the sets X and U .
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in terms of the immediate reward and the value of the next state, defined formally by:

V π(x) =

∫
U
π(u|x)

∫
X

P (x′|x, u) [ρ(x, u, x′) + γV π(x′)] dx′du, (2.4)

where x is the current state, u the selected action and x′ is the new state reached by perform the
action u in the state x. In the expression, π(u|x) is the probability of select the action u given the
current state x, P (x′|x, u) is the probability of reach the state x′ given the current state x and the
selected action u. For discrete or finite sets, the integrals are adequately replaced by summations
with index u and x′ respectively.

2.4. Temporal-Difference Learning

A learning agent observes an input state from the environment, it selects an action from
a policy π, and then it receives scalar reward feedback, indicating how was the performance in
these state. The RL goal is to find an optimal policy leading to maximizing the reward over the
long run [32]. Optimal policies are denoted by π∗ and share the same optimal value functions
which are denoted by V ∗(x) and Q∗(x, u) [2]. These optimal value functions can be solved
through the equation in (2.4).

The temporal-difference learning (TD) is a method for solving the Bellman equation.
Algorithms based on TD learn estimates values based on another estimates by adjusting the gain
against the ideal equilibrium that holds locally when the gain estimates are correct5. In each step,
it generates a learning example that approximates some value concerning the immediate reward
and the value of the next state or state-action pair [33, 30]. Therefore, when occurs a transition
from the state xt to state xt+1, the tabular update from the value function V ∗(xy) is:

V ∗(xt)← V ∗(xt) + α [rt+1 + γV ∗(xt+1)− V ∗(xt)] ,

where α is a learning rate that is determined by how much values get updated [33]. This TD
method is known as TD(0) [1]. Algorithm 1 shows a completely episodic learning method
TD(0) with an iterative tabular update of V (xt). Other methods based on temporal-difference
learning estimates Q∗(xt, ut) rather than V (xt) for some policy π. The Q-Learning [4, 34],
SARSA [5], and R-Learning [1] are TD methods that learn the action-value function based on
state-action pairs. In this work, we do not focus on these methods; however, the action-value
function is essential to introduce topics in the next section. Following, we present the actor-critic
algorithm, an iterative method, and the basis of our approach.

2.4.1. Actor-Critic

The actor-critic (AC) algorithm is a method based on TD learning that keeps a separate
memory structure to represent the policy independent of the value function [6, 1]. The agent is
5 The bootstrapping methods are strategies to estimate through others estimates; these are often used in RL and

Dynamic Programming problems [1].
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Algorithm 1 General algorithm of episodic TD learning from tabular TD(0).
Inputs: γ, α

1: Initialize V (xt) arbitrarily, π to the policy to be evaluated
2: for each episode do
3: initialize xt
4: repeat
5: ut ← given by π(u|xt)
6: Taken action ut, observe reward rt+1 and next state xt+1

7: V (xt)← V (xt) + α [rt+1 + γV (xt+1)− V (xt)]
8: xt ← xt+1

9: until xt is terminal
10: end for

separate into two entities: the actor and the critic. The policy takes the role of the actor, selecting
actions in each iteration. The critic, commonly a state-value function, evaluates or criticizes the
actions performed by the actor [35]. Fig. 2 shows the schematic structures of the AC algorithm.

In each iteration, the critic values each action through TD error:

δt = rt+1 + γV (xt+1)− V (xt), (2.5)

which is the output of the critic and the diference between the right hand and left hand sides of
the Bellman equation (2.4). The propose of TD error is determined if the task has gone better or
worse than expected. If the TD error is positive, the selected action tend to be strengthened for
the future. However, if the TD error is negative, the tendency should be weakened that action
selection in a determined state. [30]. The action is the output of the actor. The TD error improves

Figure 2 – Schematic overview of an actor-critic algorithm. Taken from Sutton and Barto [1].
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the preference to select each action. In each iteration is adjusted depending on the performance
of the agent control over the environment. There exist variations of the AC algorithm to obtain
actions in different ways, for example [1]: suppose a tabular case when the actor generates
actions based in a modifiable parameter υ(ut, xt), this represents the preference of taking action
u in the current state x. The preference can increase or decrease using

υ(ut, xt)← υ(ut, xt) + αυδt. (2.6)

The following sections will be introduced other methods to select actions based on AC algorithm.
An advantage of using this algorithm is the separate structure of the policy, which requires
minimal computation to choose actions. In large action spaces, to consider the X × U or all Q is
no necessary. Moreover, an additional advantages is to allow an agent to learn stochastic policies,
i.e., learn optimal probabilities to choose from a set of actions.

2.5. Policy-Gradient Methods and Function Approximation

Policy-gradient methods [36] are a methodology to approximate functions in RL. These
methods are the most popular class of continuous action RL algorithms [37]. With this approach,
a stochastic policy is approached through an approximation function, independent of the value
function, with its parameters. A measure is used to improve the performance of the policy, and
adjusts the parameters.

In this context, consider a standard RL setting presented in section 2.2 and section 2.3.
The policy-gradient framework uses a stochastic policy π, parametrize by a column vector of
weights υ ∈ RNa , for Na ∈ Z. π(u|x) denotes the probability density for taking an action u in
the state x. The objective function Γ(π) maps policies to scalar measure of performance, defined
by:

Γ(π) =

∫
X

dπ(x)

∫
U

πυ(u|x)Qπ(x, u)dudx, (2.7)

where dπ(x) :=
∫
X

∑∞
t=0 γ

t−1P (x|x0, u) is the stationary distribution of the discounted states
occupancy under π [38] and Qπ(x, u) the action-value function defined in (2.3). The basic idea
of policy-gradient methods is adjust the parameter υ of the policy in direction of the gradient
∇υΓ(π):

υt+1 − υt ≈ αυ∇υΓ(π).

The fundamental result of these methods is the policy-gradient theorem [36], which defines the
gradient as:

∇υΓ(π) =

∫
X

dπ(x)

∫
U

∇υπυ(u|x)Qπ(x, u)dudx (2.8)

The main difficulty with this method is to find an approximation of the gradient. It is also to
consider the explicit relationship between the policy-gradient and the value function. Therefore it
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is crucial to consider a candidate to represent the value function [36, 39]. Let hθ : X × U −→ R
be an approximation of the value function Qπ(x, u) with the parameter θ ∈ RNc , for Nc ∈ Z,
so that it does not affect the unbiasedness of the policy-gradient estimate. To find a close
approximation of Qπ(x, u) by hθ(x, u), we try to find θ to minimize the quadratic error of the
approximation as follows

επt (x, u) =
1

2
[Qπ(x, u)− hθ(x, u)]2 . (2.9)

The gradient of the quadratic error can be used to find an optimal value of θ. Considering the
approximation of Qπ by hθ, equation (2.8) is expressed as:

∇υΓ(π) =

∫
X

dπ(x)

∫
U

∇υπυ(u|x)hθ(x, u)dudx (2.10)

This approximation is acceptable if ∇θhθ(x, u) = ∇υ log (πυ(u|x)) is satisfied. The expression
is called compatible features [36, 7], establishes the features of the value function (in the form of
the gradient) are compatible with the features of the policy.

Under this approach, the expected value of hθ given policy π is zero, indicating that the
value function has zero mean in each of the states. The most convenient is to approximate an
advantage function Aπ(x, u) = Qπ(x, u)−V π(x) instead of Qπ(x, u) [40]. This implies that the
approximation function only represents the relative value of an action u in some state x and not
the absolute value of Qπ [39]. The value function V π(x) is a baseline in the advantage function,
such that the variance of the policy-gradient is minimized [41].

2.5.1. Actor-Critic with Policy-gradient

In other view,

Qπ(x, u) = Eπ [rt+1 + V π(xt+1)|xt = x, ut = u, ] ,

then, according to Sutton and Barto [1]:

Aπ(x, u) = Eπ [rt+1 + V π(xt+1)− V π(xt)|xt = x, ut = u, ] ,

than is the expected value of the TD error (2.5). Thus hθ would approximate a value function
V π(x), and the gradient in (2.10) taken form of:

∇υΓ(π) =

∫
X

dπ(x)

∫
U

∇υπυ(u|x)δ̂tdudx

= Eπ

[
δ̂t∇υ log (πυ(u|x))

]
, (2.11)

where δ̂t = rt+1 + γhθ(xt+1)− hθ(t), and hθ(x) : X −→ R the function approximation of value
function V π(x).
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In the context of AC, let hθ(x) = Vθ(x) be the approximate state value function from
the critic. The update from the value function is through θ. The parameter θ is adjusted by the
gradient of the quadratic error (2.9) as follows:

θt+1 = θt + αθδ̂t∇θVθt(xt),

where αθ > 0 is a step size parameter of the critic. It is clear that the gradient of the quadratic
error is the gradient of the approximation scaled by the TD error. In other hand, the policy, that
represents the actor, is updated based in the gradient in (2.11) as follow:

υt+1 = υt + αaδ̂t∇υ log (πυ(u|x)) ,

where αυ > 0 is a step size parameter of the actor. Note that the parameter υ and the preferences
υ(u, x) in (2.6) are similarly updated except for the gradient of the approximation. The Algorithm
2 shows a general episodic AC algorithm with policy-gradient and function approximation, this
algorithm will be the basis for implementing the proposed approach in the following chapters.

Algorithm 2 General episodic actor-critic algorithm with policy-gradient.
Inputs: γ, αc, αa

1: Initialize θt and υt arbitrarily
2: for each episode do
3: initialize xt
4: repeat
5: ut ← given by πυ(u|xt)
6: Taken action ut, observe reward rt+1 and next state xt+1

7: δt ← rt+1 + γVθt(xt+1)− Vθt(xt)
8: υt+1 ← υt + αυδt∇υ log (πυt(ut|xt))
9: θt+1 ← θt + αθδt∇θtVθ(xt)

10: xt ← xt+1

11: until xt is terminal
12: end for

2.6. Interactive Reinforcement Learning

As aforementioned, RL is a learning technique based on trial-and-error in association
with an environment. In each step, a stimulus-response process is performed to find optimal
actions and achieve an objective. An autonomous agent can perceive states and is also able to
select actions that influence the environment in a certain way. The goal of the agent is to try to
maximize the received reward for the entire task [42].

On some occasions, to leave that an agent learns a task by itself is impractical and
involves problems to find the proper policy [43]. Interactive Reinforcement Learning (IRL) is
an approach that considers a knowledgeable trainer, which gives advice or guidance to the RL
agent, having an effect of restricting the actions selection to those related to the target object
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Figure 3 – Interactive Reinforcement Learning scheme including an external trainer. Taken from
Cruz [2].

[44]. Fig. 3 shows a general view of the IRL approach, an external trainer is added during the
learning process to modify the agent decision.

In an IRL scenario, it is desired that the interaction between the external trainer and
the agent be as minimal as possible; otherwise, it could become supervised learning. Another
important aspect is the quality of the advice, since the external trainer may make mistakes the
agent may not improve with its training [14, 45]. The guidance can be obtained from expert or
non-expert trainers, artificial agents with perfect knowledge of the task or previously trained [8].

There are two approaches to receiving advice from an external trainer [46]. The first is
reward-shaping, where the external trainer modifies the reward by sending its reward to the agent
to inform how good the selection of the action was in the previous step [12, 44]. The second
approach is policy-shaping, where the external trainer modifies the action just selected by the
agent. This approach tells the agent that its current performance is wrong and should improve
for the future [10, 43].

2.7. Dynamic Approach: Robust Reinforcement Learning

During the learning, the agent performs an action that stimulates the environment in
some way. Assuming that, this last one is governed by a parametric system (deterministic or
stochastic), the action acts as an input that modifies the output values, but not the model of the
system. There could be errors in the system, independent of the actions, which randomize it
by disturbing the output of the system. Errors can be strongly correlated, so assumptions about
independence may not be valid in these systems [47]. There are also parameters in the system



15

Figure 4 – Reinforcement learning scheme including a dynamic environment. The environment
is affected by the disturbance input that modifies the state output.

that change concerning time; these parameters can be independent of actions and states. These
properties are characteristic of a dynamic environment, in the sense that some features of the
system change independently control agent.

An RL agent has to interact with its environment to gather enough knowledge about the
desired task. However, the agent can receive different amounts of reward for the same action (or
for a subset of actions). Different approaches consider robust agents with less sensitivity to these
changes, and with the ability to resist an entry disturbance.

Morimoto and Doya [19] present the Robust Reinforcement Learning (RRL), an approach
that introduces a disturber who provides disturbance to the environment. To resist a disturbance
input, it considers an additional reward ω(wt) that modifies the reward of the environment, where
wt ∈ W(xt) is the disturbance input, and W(xt) is a set of the disturbing input in the state xt.
Therefore, the increased reward is defined by [21]:

q(ut, xt, wt)← ρ(ut, xt) + ω(wt), (2.12)

where ρ(ut, xt) is the reward function defined in the section 2.3.

Eventually, as a result of performing an action, the disturbance is generated by a function
κ : X −→ W , and the agent receives an augmented reward qt+1. The function ω(·) is taken as a
quadratic cost so that it can withstand the maximum possible disturbance [48]. Fig. 4 shows a
view of the RRL approach [19], where an external disturber providing noise to the environment
is added to the learning process.
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2.8. Related Approaches

In the area of RL, there are diverse researches oriented to various problems. In many
works, representations of the space of states and actions that enhance the loss of information are
used. Many others show that learning is slow and the task cannot be solved properly. With these
approaches, only discrete advice is considered, also that the action belongs to a discrete space so
it could hardly be generalized to a space of greater complexity.

For continuous spaces, we can identify the work of Doya [17] where implements a
framework of RL in continuous spaces of time, states and actions, also proposes the continuous
actor-critic algorithm and a gradient approximation to performs the policy. Van Hasselt and
Wiering [16] propose the Continuous Actor-Critic Learning Automaton (CACLA) to carry
actions and states in continuous spaces. Policy-gradient methods and function approximator
[15, 36] are more used in continuous RL. In our work, we use the Actor-Critic algorithm and
policy-gradients to learn an optimal policy. Unlike Doya [17], we do not use information from
the environment model, only the states and the reward obtained. During training, the policy is
updated in each iteration, contrary to what is presented in [16].

Researches in robotics and parametrize motor skill are developed and applied in the works
[49, 50, 38]. An advantage of using several variations of actor-critic algorithms [39] is consider
different policy nature. Silver et al.[37] present a deterministic policy-gradient algorithms, this
approach reaches better results by integrating only states to improve the policy.

In the context of interaction with external trainers, Schaal [51] presents training by
demonstration, in this work the agent learns from the human trainer through demonstrations,
they show a speed convergence using traditional RL methods and using bias to address the agent
exploration to cover the search space adequately. Subramanian et al. [52] presents exploration by
demonstration. In his work, he guides the exploration of agents through human demonstrations.
They find an advantage over other interaction-based methods of accelerating learning. Their
implementations are carried out in environments with discretized spaces; however, they use
function approximation to estimate the value function. Thomaz and Breazeal [10] present the
first IRL approach, an approach where an external trainer guides the agent to complete a task.

Suay and Chernova [44] present a study the IRL in a real-world robotic system. This
work shows that the trainer makes a feedback process with the agent: it provides a reward amount
depending on whether it just did was good or bad, and, it can drive it to select the subsequent
action [12]. When the action and state spaces grown, using guidance trainer significantly reduce
the learning rate and its impact increases in more complex spaces.

Griffith et al. [14] proposes the advice method which uses two likelihoods, C to refer
to the consistency of feedback which comes from an external trainer, and L to refer to the
probability of receiving feedback. The algorithm used in this approach is Bayesian Q-learning
[11]. Besides, this approach considers two sources of variation, the agent policy, and feedback
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policy. The authors propose that the feedback policy be the optimal probability of performing a
pair (x, u); this is computed using the "right" and "wrong" labels associated with it.

Cruz et al. [8, 2] integrate IRL and contextual affordances; the proposal presents an
improvement in the rates of success, a fewer number the actions are performed during the
learning and faster convergence is reached when including a negative reward after to perform an
action. They carry out their implementation in a robotic domestic scenario, where an agent tries
to learn to perform a domestic task.

Unlike the works presented by Thomaz and Breazeal [10, 9], Suay and Chernova [44],
and Griffith et al. [14], our work focuses on states and continuous actions. We use the actor-critic
algorithm, in contrast to the Q-learning algorithm that is used in the works mentioned above. Our
approach takes elements from Griffith et al. [14], agent policy, and feedback policy as sources of
variation. However, our approach assumes that the feedback policy, or the probability of giving
advice, is unknown, and its form depends on the characteristics of the environment and the
external trainer. On the other hand, our implementation does not consider Bayesian inference
assumptions during the estimation of parameters as considered by Bayesian Q-learning [11].

In the area of dynamic environments, Sutton [53] presents a problem of changing
environments where it implements Q-Learning to learn a navigation task in a scenario where
obstacles change position. Morimoto and Doya [19] present Robust Reinforcement Learning, a
methodology to train more robust agents against dynamic environments. They propose the Actor-
Disturber-Critic (ADC), an algorithm that introduces a disturbance in the classic A actor-critic.
Although learning is slow, they implement continuous domains for actions. In our proposal,
we use policy-gradients, based on a cost function, to synchronize an optimal policy and the
distribution that generates the disturbances. On the other hand, we carry learning independent
from the environment model. Obayashi et al. [48, 54] implement the Robust Reinforcement
Learning methodology using the concept of sliding mode control on the inverted pendulum.

Dongsun and Park [55] use an approach where situations (transition from state to state)
are related to settings (environment characteristics) during learning. The goal is to find the best
relationship between situations and settings. Applying Q-Learning they apply the algorithm in
Robocode where they simulate a battle between robots. Puriel-Gil et al. [47] use PD control
(Proportional-Derivate control) to adapt actions to environments that change their characteristics
after learning. They train from a Q-Learning algorithm, extract the matrix Q, and make a
modification when selecting actions. The modification is made by adding new parameters to
the action. The implementation is done in cart-pole balancing, modifying the weight of the
pendulum.

Finally, there are some works on RL with external feedback in continuous spaces. Vien y
Ertel [56] propos ACTAMER, an extension of TAMER RL for continuous states and actions that
includes an external reinforcement signal to improve learning. Their proposal was implemented
in the cart-pole balancing task and the mountain-cart task. The TAMER framework considers
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learning an optimal policy that compares to a way of acting from the external trainer. Our
approach considers the external trainer as a guide that will give feedback so that the agent
learns his policy. Stahlhut et al. [57] powered by Interactive Continuous Actor-Critic Automaton
(ICACLA), an algorithm based on CACLA [16] that includes an external capacitor. Based on the
policy shaping methodology and the capacitor guides the agent to change the selected action
through UNDO [10]. Millán et al. [21] proposes a methodology based on policy shaping to
include variable advice on an actor-critic algorithm for states and continuous actions.
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Chapter 3

Interactive Reinforcement Learning
Approach for Continuous Action Space
and Dynamic Environments

In this chapter, the proposed methodology for the development of the problem is dis-
cussed. The flow chart of the Fig. 5 shows how our methodology is carried out. Based on a
Reinforcement learning methodology: first, the issue of Interactive Reinforcement Learning
for continuous spaces will be addressed. A policy-shaping approach is suggested to includ-
ing external advice in the actor-critic algorithm. Then, we including policy gradient methods
in an actor-disturber-critic algorithm to implement Robust Reinforcement Learning. Finally,
Interactive Robust Reinforcement Learning will be addressed.

Figure 5 – A flowchart that explains how our methodology is carried out. In the upper part,
external advice is including in the actor-critic algorithm. In the lower part, the policy
gradient method is including in the actor-disturber-critic algorithm.
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3.1. Policy-Shaping Approach

Consider the standard RL setting presented in section 2.2 and 2.3. During the interaction
with the environment, the agent selects an action following the policy in the current state. In the
context of IRL, an external trainer gives advice to the agent that modifies the action selected.
Let Jt ∈ J(xt) be the advice provides by an external trainer at time t, with J(xt) the set of all
possibles instructions that allow reaching a goal. In some iteration steps, the trainer may not
provide feedback. Thus, the likelihood of receiving feedback [14] has probability 0 < L < 1.

Suppose that any action ut is selected from a policy π given that an external trainer
provides advice Jt in the state xt. Let π(u|xt, Jt) be the probability density function of the
actions after taking into account the advice Jt and the state xt. In this sense, the policy is
modified just after the trainer gives advice; nevertheless, the agent has only access to its policy
π(u|xt), and the actions are chosen from there. If it assumes that Jt and xt are random variables
with some distribution of probability, from properties of conditional probability, the policy
π(u|xt, Jt) can be expressed by [21]:

π(u|x, J) =
P (u, x, J)

P (x, J)
=
PJ(J |u, x)P (u, x)

P (x, J)

=
PJ(J |u, x)P (u|x)Px(x)

PJ(J |x)Px(x)

=
PJ(J |u, x)

PJ(J |x)
π(u|x). (3.1)

This equation shows a clear relation between the policy π(u|x, J) and the agent policy.
The probability distribution PJ(J |u, x) expresses evidence to give advice when the agent chooses
the action u in the state x. Besides, the probability distribution PJ(J |x) represents evidence
to give advice when the agent reaches the state x. The agent policy π(u|x) is the probability
of selecting an action u before obtaining advice J . In the context of Bayesian inference, this
represents the prior distribution of the action u in the state x before the advice J is observed
[58].

The factor PJ (J |u,x)
PJ (J |x)

in (3.1) can be interpreted as the impact of receiving advice on
the selection of the action u (or on the probability of select the action). If PJ (J |u,x)

PJ (J |x)
≤ 1,

(π(u|x, J) ≤ π(u|x)) the advice is irrelevant (with equality) or decrease the probability of select
one action. If PJ (J |u,x)

PJ (J |x)
> 1, (π(u|x, J) ≥ π(u|x)) the advice improves the policy and increases

the probability of select one action. Particularly, PJ(J |u, x) favors a subset the actions during
the process of selecting actions [21]. Fig. 6 shows an example of the influence of PJ (J |u,x)

PJ (J |x)
on the

policy π(u|x). In this graph, the agent policy gives options to choose actions in one region with
greater probability, however, the factor PJ (J |u,x)

PJ (J |x)
grants a privilege to the actions in other region

of space. Thus, the actions with higher probability are placed in another region that favors the
actions chosen for the policy as much as actions selected by feedback.
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Figure 6 – Impact of the receiving advice PJ (J |u,x)
PJ (J |x)

on the agent policy π(u|x).
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The expression (3.1) involves two sources of variation as in [14], however, it general-
izes their approach to implement advice from different spaces, it also provides a measure of
information to assess the influence of the advice on the selection of actions.

3.1.1. Actor-Critic including advice information

Consider a stochastic policy πυ(u|xt, Jt) that is parametrized by a column vector of
weights υ ∈ RNa . In the expression (3.1), it is clear that PJ(J |u, x) and PJ(J |x) are not
known, and it is not possible to obtain a large sample of Jt during each step. We can consider
any probability density function π∗J(u|x) to approximate PJ(J |u, x). Thus, the advice policy
πυ(u|x, J) can be represented by:

πυ(u|x, J) ∝ π∗J(u|x)× πυ(u|x), (3.2)

where π∗J(u|x) has the characteristic to grant a privilege to actions in some region of space
determined by the advice J . The parameter vector is allowed to be only part of the agent policy;
after all, the objective is to find the optimal policy that maximizes the future reward. However,
the probability function may have parameters that improve the selection of actions.

In the context of AC with the policy-gradients, the agent policy is modified to include the
advice. Now the parameter is updated by a gradient∇υ log (πυt(ut|xt, Jt)) where Jt is the advice
which comes from an external trainer at time t. If the advice is missing, it is correct to use the agent
policy because it is not relevant information to improve the probability (π(u|x, J) = π(u|x)).

The full implementation of the actor-critic with interaction is shown in Algorithm 3. The
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Algorithm 3 Episodic Actor-Critic algorithm with advice and policy-gradient.
Inputs: γ, αc, αa, L

1: Initialize θt and υt arbitrarily
2: for each episode do
3: initialize xt
4: repeat
5: ut ← given by πυt(u|xt, Jt) with Jt = ∅ (Non advice)
6: if rand(0, 1) < L then
7: Get advice Jt
8: Change actions ut ← πυt(u|xt, Jt)
9: end if

10: Taken action ut, observe reward rt+1 and next state xt+1

11: δt ← rt+1 + γVθt(xt+1)− Vθt(xt)
12: υt+1 ← υt + αυδt∇υ log (πυt(ut|xt, Jt))
13: θt+1 ← θt + αθδt∇θtVθ(xt)
14: xt ← xt+1

15: until xt is terminal
16: end for

red statements show the differences to actor-critic from the Algorithm 2. In this algorithm we
use the advice method parameter for interaction [14], i. e., the probability of receiving advice L
(line 6).

3.2. Policy-Gradient Methods for Robust Reinforcement Learn-
ing

In the work presented by Morimoto and Doya [19], they implement an AC algorithm with
a disturbance input, the so-called Actor-Disturber-Critic (ADC). In their methodology, a function
approximation is used to represent the value function, the agent policy, and the function that
generates the disturbance, the so-called disturber. In section 2.7 is mentioned that an increased
reward is used to withstand the maximum noise generated by the model.

The policy-gradient method presented by Sutton [36], and described in section 2.5,
proposes using the cost function (2.7) to maximize the performance of the policy. We include
policy-gradients in the ADC of this approach; the main idea is to consider an objective function
for agent policy and the disturber. In the disturber, the cost function evaluates the performance
of the distribution in generating disturbances that have a more significant impact on the states,
and in the selection of the next action. We consider that the disturber is a probability density
function κω(xt) parameterized by the weight vector ω ∈ RNd . The parameter ω is adjusted in the
direction of the gradient∇ωΓ(κ) to generate the highest possible disturbance:

ωt+1 − ωt ≈ αω∇ωΓ(κ),
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where αω is a learning rate of the disturber. Algorithm 4 presents an episodic ADC with policy-
gradients for the actor and the disturber.

Algorithm 4 Episodic actor-disturber-critic algorithm with policy-gradients.
Inputs: γ, αc, αa, αa

1: Initialize θt and υt arbitrarily
2: for each episode do
3: initialize xt
4: repeat
5: ut ← given by πυt(u|xt)
6: wt ← given by κωt(wt|xt)
7: Taken action ut, observe reward rt+1 and next state xt+1

8: δwt ← qt+1 + γVθt(xt+1)− Vθt(xt)
9: υt+1 ← υt + αυδt∇υ log (πυt(ut|xt))

10: θt+1 ← θt + αθδt∇θtVθ(xt)
11: ωt+1 ← ωt − αωδwt ∇ωt log (κω(wt|xt))
12: xt ← xt+1

13: until xt is terminal
14: end for

Algorithm 5 Episodic actor-disturber-critic algorithm with advice.
Inputs: γ, αc, αa, αa, L

1: Initialize θt and υt arbitrarily
2: for each episode do
3: initialize xt
4: repeat
5: ut ← given by πυt(u|xt, Jt) with Jt = ∅ (Non advice)
6: if rand(0, 1) < L then
7: Get advice Jt
8: Change actions ut ← πυt(u|xt, Jt)
9: end if

10: wt ← given by κωt(wt|xt)
11: Taken action ut, observe reward rt+1 and next state xt+1

12: δwt ← qt+1 + γVθt(xt+1)− Vθt(xt)
13: υt+1 ← υt + αυδt∇υ log (πυt(ut|xt, Jt))
14: θt+1 ← θt + αθδt∇θtVθ(xt)
15: ωt+1 ← ωt − αωδwt ∇ωt log (κω(wt|xt))
16: xt ← xt+1

17: until xt is terminal
18: end for

3.3. Interactive Robust Reinforcement Learning Approach

To include advice during learning when the agent interacts with a dynamic environment,
we combine the IRL and RRL approaches to propose Interactive Robust Reinforcement Learning
(IRRL). This approach involves advice for the agent to learn a task from an environment that has
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dynamic features. The advantage of this is that the agent learns the task quickly, compared to
an autonomous agent, and is more robust against changes in the environment independent of
actions. Algorithm 5 shows the episodic ADC with advice in the context of IRRL. The underlined
statements show the differences to ADC from Algorithm 4.
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Chapter 4

Results and Discussion

This section presents the experimental setup used to carry out the experiments, the results
obtained, and the discussion of the research.

4.1. Experimental Setup

4.1.1. Cart-pole Balancing task

To evaluate the performance of our methodology, we apply it to the classic cart-pole

balancing task [6]. The objective is to balance a pendulum by applying a force on the cart to
which is attached. Cart-pole balancing is a continuous task, but in our implementations, we use
it as an episodic problem. Thus, the agent task ends when the pole falls, i.e., the agent does not
reach to balance the pendulum, or after 400 iterations in the episode. Fig. 7 shows a schematic
representation of the cart-pole balancing problem. The cart is free to move within the limits of a
one-axis road. The pole is free to spin on a pivot on the vertical axis of the cart and the track.
The controller applies a force F to the right or left of the cart; this allows the cart to move and
keep the pole balanced [3]. The force is bounded by the interval (−Fmax, Fmax), where Fmax is
a system parameter. The cart-pole model has four output variables:

χ ∈ [−2.4, 2.4] position of the cart in the track.

χ̇ cart velocity.

φ ∈ [−π/15, π/15] angle of the pole with the vertical axis.

φ̇ angular velocity (rate of change of the angle).

The model has other parameters such as the pole length and mass, cart mass, coefficients of
friction between the cart and the track, and at the hinge between the pole and the cart, the
impulsive control force magnitude, the force due to gravity, and the simulation time-step size.
Table 1 shows the magnitude of each parameter [6].
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Figure 7 – System of the cart-pole balancing task, a cart attached to a track where it is free
to move to balance a pivot attached to it. The applied force F produces a linear
movement on the cart and an angular movement on the pole. Figure adapted from
Nagendra et al. [3].

Table 1 – System parameters of the Cart-pole balancing task.

Parameter value

g gravity −9.8 m/s2

mc mass of cart 1.0 Kg
m mass of pole 0.1 Kg
l half-pole length 0.5 m
µp friction of pole on cart 0.000002
µc friction of cart on track 0.0005
Fmax force applied to cart center 10 N

In our implementation we use the OpenAI Gym toolkit [59], where the cart-pole system
is implemented based on the nonlinearities and reactive forces of the physical characteristics
of the system. A modification was made in the Python source code to implement continuous
actions and our own reward function. Details on this modification are presented in Annex A. On
the other hand, we assume that the system model is unknown and that there is no agent that has
previous knowledge of the task.

4.1.2. Reinforcement Learning Setting and Neural Architecture

In the context of RL, we define the states and actions under the cart-pole balancing
environment. We also define the policy, value function, and disturbance of the dynamic approach.
We use a representation of a one dimensional action u←− F and four dimensional states as

x←−

{
χ

2.4
,
χ̇

2
, 15

φ

π
,
φ̇

1.5

}
.



27

This normalization allows us to delimit the states in an interval (−1, 1) so that the magnitude of
the variable is not an influence on learning. We define the reward function in our implementation
as:

ρ(x, u) = ρ0 − 0.2 ∗ |Fu − u|, (4.1)

where Fu = min{max{−Fmax, u}, Fmax}, and

ρ0 =


cos(15

2
φ) if |χ| < 2.4 ∧ |φ| < π

15

−10 if |χ| ≥ 2.4

−30 if |φ| ≥ π
15

.

As aforementioned, the actions are obtained from a stochastic policy based on a proba-
bility distribution function. We define politics as a Gaussian distribution function [60] of mean
µυ(x) and standard deviation σx. The value µυ(x) is interpreted as the action with the highest

probability of selection. The value σx gives a explore range to search for actions. The disturber
is defined in the same way as the policy; however, in our experiments, we use a disturbance
with two degrees of freedom. Thus, the disturbance is generated by a two-dimensional Gaussian
distribution function with the mean vector µω(x) and covariance matrix Σw. Variances from
policy and disturber are fixed during learning, however, with the ability to give the necessary
exploration [60].

To use policy gradients and function approximations, we implemented a multilayer
perceptron (MLP) which is a feedforward network with a hidden layer for each of the elements
[61]. The approximation is carried out as follows:

For the value function V (x), an MLP with an input layer of 4 units, a hidden layer of 50
units, and an output layer with one unit.

For the mean µυ(x) of the policy, an MLP with an input layer of 4 units, a hidden layer of
20 units, and an output layer with one unit.

For the mean µω(x) of the disturbance, an MLP with an input layer of 4 units, a hidden
layer of 20 units, and an output layer with two units.

In the three architectures, we apply as activation function the hyperbolic tangent (tanh)
in the hidden layer, and in the output layer a linear activation. Learning rates are empirically set
at αθ = 0.001, αυ = αω = 0.0001, and the discount factor γ is set at 0.9. Each set-up has been
carried out 20 times using the average steps and average collected reward for the analysis. During
the learning, we decided that the episode end in three situations: If the pole falls (|φ| ≥ 2.4),
if the cart collides with the ends of the track (|χ| ≥ π

15
), or if the pole is swinged up for 400

iterations. The values of the weights in the neural network are randomly initialized from a normal
probability distribution with mean 0 and standard deviation 1 [16, 61].
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4.2. Experimental Results

4.2.1. Training an agent using classic RL

First, we perform the training of agents with the AC algorithm (see algorithm 2) using
the reward function presented in equation (4.1). We test diverse values of σx to investigate the
influence on the learning process in terms of performed actions and collected reward. Due to the
domains are continuous sets, the agent needs even more time to explore space and find enough
patterns to learn the task. Then, more than 800 training episodes are required to keep the pole
balanced.

Fig. 8 shows the average steps performed with σx ∈ {0.5, 1, 2}. We can observe that
with a value of standard deviation σx = 2 the agent has a better performance in the first episodes,
this is due to it has more actions available for selecting around to a value with high probability
µυ(x). After 500 episodes the agent is able to keep the pole balanced by more than 350 steps.
Even so, an agent with standard deviation σx = 1 can improve his performance before reaching
1500 episodes. The shaded area shows the confidence bands at 95%. It is noted that the band is
wider for low values of σx, indicating that the performance of the agent is different in each run.

Figure 8 – Average steps over 15 runs using classic RL in 1500 episodes with different standard
deviation σx. The shaded area shows the confidence bands at 95%. In each episode,
the agent can perform a maximum of 400 steps (actions). The agent has a better
performance with σx = 2 due to it has more actions available for selecting.
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Fig. 9 shows the average rewards collected by the agent over 1500 episodes for different
values of σx. It can be seen that the curves start with values around −1 which means that at the
beginning the agent is not able to keep the pole balanced or the cart collides with the limit of the
track, that behavior is maintained for 500 episodes. After 500 episodes the agent can keep the
pole balanced by more steps and increase the collected reward up to 1.
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Figure 9 – Average collected reward over 15 runs using classic RL in 1500 episodes with different
standard deviation σx. The shaded area shows the confidence bands at 95%. In each
episode, the agent can collect at most 1 average reward.
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4.2.2. Training an agent using IRL

To approach a real scenario, an external trainer observes the pole attached to the cart
and, based on its criteria, will give advice. In this sense, the trainer will say "push to the right" if
the pendulum is falling to the right, and say "push to the left" if the pole falls to the left. Thus,
acceptable advice is a dichotomous variable that indicates the direction where the cart has to be
pushed. In our implementation, we create an oracle, a function JO(x, u) defined by:

JO(x, u) =

{
−1 if push to the left

1 if push to the right
.

We calculated the necessary force FR to remain the pole balanced during the next step, then we
make the difference between FR and the action selected by the agent u. The return is the sign of
this difference.

Once the advice is obtained, a subset of actions is privileged according to the equation
(3.2). We define the function π∗J(u|x) as a Gaussian distribution with mean µJ(x) = µυ(x)+Jµ∗j

and standard deviation σJ where J ←− JO(x, u). This function favors actions that are µ∗j units
more (or less) than the most likely action given by the policy µυ(x). In this way, the advice

policy takes the form of a Gaussian distribution defined as:

πϑ(u|x, J) =
1√

2πσ2
XJ

exp

{
−(u− µXJ)2

2σ2
XJ

}
,

where µXJ =
σ2
Jµϑ(x)+σ

2
xµJ (x)

σ2
J+σ

2
x

and σ2
XJ =

σ2
Jσ

2
x

σ2
J+σ

2
x
.

We test different values of L, σJ and µ∗J to investigate its influence during the learning
process in terms of preformed steps and collected reward. We used a fixed standard deviation of
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policy σx = 1 in these experiments. Besides, the average steps and the average collected reward
were smoothed by a moving average with a empirical window size 30.

Fig. 10 shows the average steps performed with probability of likelihoodL ∈ {0.1, 0.3, 0.5, 0.7},
standard deviation σj = 1, and mean µ∗j = 5. The black line shows the average steps with RL
which is equivalent to L = 0. We can observe that with the even smaller probability the agent can
improve its performance, mainly in the first episodes. Additionally, Fig. 11 shows the average
collected reward by the agent over the episodes for different values of L.

Figure 10 – Average steps over 15 runs using IRL with different probability of likelihood L,
standard deviation σJ = 1 and mean µ∗J = 5. The black line shows the number of
steps with the classic RL that is equivalent to L = 0. With interaction probabilities
as small as L = 0.1, the agent takes advantage to increase the number of steps to
keep the pole balanced.
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Afterward, we explore the learning process with different values of σJ . For high values
of σJ , concerning σx, the advice does not have a high impact on the agent, i.e., it is irrelevant
for learning. In another case, for low values of σJ , the advice has a relevant effect on the agent
decision.

We set the probability of likelihood to L = 0.5 and the mean µ∗J = 5, and investigate the
learning performance for different standard deviations σJ ∈ {0.1, 0.8, 1, 2, 4}. Fig. 12 shows the
average steps performed by the agent in this experiment. The black line represents an autonomous
RL agent that is equivalent to L = 0 and σJ −→ ∞. The smaller the value of σJ , the agent
achieves a better performance in its task keeping the pole balanced by more than 350 steps.
We observe that with a value of σJ = 1 a better performance is obtained than with a value
of σJ = 0.8, however, the performance is even greater with smaller values, such as σJ = 0.1.
Higher values suggest that the IRL agent performs similarly to an RL agent in terms of steps.
Concerning the average collected reward (see Fig. 13), the agent achieves rewards of 1 with
standard deviations less than σJ = 1.
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Figure 11 – Average collected reward over 15 runs using RL (black line) and IRL approach with
different probability of likelihood L, standard deviation σJ = 1 and mean µ∗J = 5.
After 700 episodes all approaches reach a reward over 0.75.
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Figure 12 – Average steps over 15 runs using IRL with different values of standard deviation
σJ , mean µ∗J = 5 and probability of likelihood L = 0.5. The black line shows the
average steps with RL which is equivalent to σJ −→ ∞. The lower the values of
σJ , the agent takes advantage by augmenting the steps which it remains the pole
balanced.

100

200

300

400

0 500 1000 1500
Episodes

S
te

ps

RL Classic
σ J = 0.1
σ J = 0.8
σ J = 1
σ J = 2
σ J = 4

γ = 0.9, μ j
* = 5, L = 0.5, αθ = 0.001, αυ = 0.0001

Average steps using actor-critic IRL

Finally, we investigate the learning behavior with different values of µ∗J . This unit should
not be considered as a model parameter since it is only part of a strategy to unify the space of two
variables, the advice (discrete) and the actions (continuous). However, it explains how advice
induces a tendency towards the privileged region, whether it is right or wrong. For example,
suppose that σJ = σx and µJ(x) = µυ(x) + Jµ∗j , from the advice policy, we can say that
µJX = µυ(x) + Jµ∗j/2. Then, if the value of µ∗j is close to zero, the advice will not be influential
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Figure 13 – Average collected reward over 15 runs using classic RL (black line) and IRL ap-
proach with different standard deviation σJ , mean µ∗J = 5 and probability of
likelihood L = 0.5.
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in making the decision, in fact, it could be said that the trainer acts in the same way as the agent.
Instead, if the value is quite far from zero, the advice will be influential in making the decision
and drives the agent to select actions in another region of the space.

We investigate the learning performance for different values of mean µ∗J ∈ {3, 5}, we
set the probability of likelihood L = 0.5 and the standard deviation σJ = 1. Fig. 14 shows
the average steps taken by the agent to complete the task; the black line indicates the steps of
a classic RL implementation. We observed that the performance of the agent is higher with a
value of µ∗J = 5. Also, the learning time is reduced, achieving more than 350 steps after the 500

episodes. With values of µ∗J close to zero, the agent performance is similar to that of a classic
RL agent, however, in the last episodes, we perceive that more than 350 steps are reached. In
terms of reward, Fig. 15 shows that the agent receives a reward greater than 0.75; however, with
µ∗J = 5 the maximum reward value is reached.

4.2.3. Training an agent using RRL

In this part of the experiments, we performed the training of agents with the ADC
algorithm (see algorithm 4) using the reward function in the equation (4.1). In order to resist the
disturbance, we consider the additional reward ω(wt) in (2.12) of the form

ω(wt)←− η2w†twt

where † is the transpose of a vector and η is a parameter of robustness [19]. Empirically we set
the robustness value η = 0.45, exploration standard deviation σx = 1, and the covariance matrix
Σ = I2, where I2 is the identity matrix of order 2.
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Figure 14 – Average steps over 15 runs using IRL with different values of µ∗J , probability of
likelihood L = 0.5 and σJ = 1. The black line shows the average steps with RL
which is equivalent to µ∗J = 0. The agent has a better performance with µ∗J = 5,
after 500 times it keeps the pole balanced for more than 350 steps.
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Figure 15 – Average collected reward over 15 using classic RL (black line) and IRL approach
with different values of µ∗J , probability of likelihood L = 0.5 and σJ = 1. After 500
episodes, the agent collects more than 0.75 of reward with, however, with µ∗J = 5, it
is reached to 1 of awards.
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We investigate how the learning process is using RRL in a fixed environment. Fig. 16
represents the average steps taken by the agent to complete the task. The black line shows an
autonomous RL agent that is equivalent to η = 0. We observe that the performance of an agent
using RRL is lower than that of an agent trained with RL. Morimoto and Doya [19] discuss on
this behavior in their work. RL agent has better performance (is faster) than an RRL agent; this
is because the disturbance is explicitly considered during learning. The curves begin performing
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Figure 16 – Average steps over 15 run using RRL in a fixed environment during the learning with
η = 0.45. The black line represents the average steps using RL, the performance of
the RRL do not overcome to RL agent.
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Figure 17 – Average collected reward over 15 runs using RL (black line) and RRL approach in
a fixed environment with η = 0.45. Here, the augmented reward is not taken into
account. The collected reward is higher than 0.75 after 700 episodes for the two
methodologies.
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the task in less than 50 steps; after episode 500, the RL agent begins to perform better. Fig. 17
shows the average reward collected for this experiment, the reward illustrated is that obtained
directly from the environment.

Our goal with this methodology is to train more robust agents that resist an external
disturbance to the environment. Thus, we perform a test where a previously trained agent
confronts changes in the environment. Here, we compare the success rate of a robust agent
against an RL agent. The success rate is calculated with the number of steps in 100 episodes. If
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the pendulum is held for 400 steps, the episode ends. We use 15 runs to compare the average of
the rate.

Fig. 18 shows the success rate of the cart-pole balancing task. We take the friction of
the cart on track in µc ∈ [0.0005, 1]. Each trial was initiated from an angle φ(0) selected from a
uniform distribution with limits (−0.05, 0.05). The success rate using a robust agent with the
friction coefficient µc = 1 was about 45% while using a classic RL agent it was about 42%.
We note that, for friction coefficient µc close to the training value (µc = 0.0005), the success
rate of a robust agent is higher than the rate of a classic RL agent, however, when the friction
approaches µc = 1, the success rate tends to be the same in both experiments.

Figure 18 – Average success rate over 15 learned agents using RRL in a fixed environment
during the learning. The black line represent the success rate using RL. The success
rate using a robust agent with the friction coefficient µc = 1 was about 45% while
using a classic RL agent it was about 42%.
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Following, we explore the learning process in a dynamic environment where we modify
the friction of the cart on the track at each step. The friction µc is generated from a uniform
distribution with limits (0.0005, 0.002), the number of episodes was set at 3000. Fig. 19 shows
the average steps taken by the agent to complete the task. Like the fixed environment, the RRL
agent tends to take fewer steps during learning compared to the RL agent. Fig. 20 presents the
average reward collected by the agents during the learning. After 1500 episodes, the reward
collected is close to 1; this shows the agent difficulty in finding optimal actions during learning.
The selected actions can follow patterns that are not present in the environment, and when
they are applied, they do not have the same effect as they would have in previous steps or with
different friction values.
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Figure 19 – Average steps over 15 run using RRL in a dynamic environment during the learning
with η = 0.45. The black line represents the average steps using RL, the performance
of the RRL do not overcome to RL agent.
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Figure 20 – Average collected reward over 15 runs using RL (black line) and RRL approach in a
dynamic environment with η = 0.45. Here, the augmented reward is not taken into
account. The collected reward is 1 after 1500 episodes for the two methodologies.
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4.2.4. Training an agent using IRRL

Finally, we train agents using the ADC algorithm with advice (see algorithm 5). The
reward function in the equation (4.1) will be used. We carry out these experiments with 3000

episodes and fixed exploration standard deviation σx = 1. In this part we only investigate the
learning behavior for different values of the probability of likelihood L ∈ {0.1, 0.3, 0.5, 0.7}.
We set the value of the standard deviation σJ = 1, mean µ∗J = 5, covariance matrix Σ2 = I2 and
robustness parameter η = 0.45.
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Fig. 21 represents the average steps taken by the agent to keep the pole balanced. We
observe a better performance of the agents which receive advice compared to the RRL agent.
In the first episodes, agents which receive a lot of advice may take longer episodes to improve
their performance, however, after 1000 episodes the average number of steps is higher than 300

and continues to increase. With a probability of interaction L = 0.7, learning begins with a low
performance, however, after 1000 episodes its performance improves at the same time than other
probability of likelihood values L. Fig. 22 shows the average reward collected during learning. It
should be noted that after 1500 episodes the agents get rewards close to 1.

Figure 21 – Average steps over 15 runs using IRRL with different probability of likelihood L
with dynamic environment. The black line shows the average steps using RRL. With
interaction probabilities as small as L = 0.1, the agent takes advantage to increase
the number of steps to keep the pole balanced.
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Figure 22 – Average collected reward over 15 runs using RRL (black line) and IRRL approach
with different probability of likelihood L. After 1500 episodes, the collected reward
is close to 1 for all curves.
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Chapter 5

Conclusions

This thesis presents an approach to implement IRL in scenarios where states and actions
are continuous in dynamic environments. The proposal is applied in the cart-pole balancing
task, and we evaluate the ability of the agent to learn by comparing the number of steps and
the reward collected over episodes. We individually evaluate each of the algorithms to have a
comparative basis and be able to combine them at the end. Besides, different parameter settings
are implemented to investigate the effect on learning. In the case of RL, learning depends on the
value of the standard deviation of the distribution; this parameter assumes the role of exploration.
Thus, the higher this value, the more actions are available around the value predicted by the neural
network. However, exploitation is reduced, and learning is affected during the last episodes,
approximately after 1000 episodes. It is necessary to choose a standard deviation value that
merits the balance between exploration and exploitation.

In terms of IRL, we obtained better agent performance by giving advice compared to
the classic RL. With our methodology, the agent can learn the task in fewer episodes, and the
number of steps per episode reaches approximately the maximum (400 steps). We can note that
with advice values L = 0.5 and L = 0.7, the performance agent is similar. Happening because
the advice the agent receives is not very informative.

In terms of RRL, the agent requires a higher number of episodes to learn the task.
However, the agent is more robust in dynamic environments and manages to perform the task
facing environmental disturbances. Learning is indifferent to the dynamics of the environment.
The reward obtained with RRL does not exceed that of the classical RL; however, this may be
related to the same disturbance present in the reward (which depends on a disturbed state).

Finally, with IRRL in terms of average steps, our approach performs better than the
autonomous RRL. However, the performance of the IRRL agent with probability L = 0.5 is
close to that of the autonomous RRL agents. In terms of reward, we note that a cumulative reward
of 1 is achieved for any probability L; however, values such as L = 0.7 have greater difficulty in
the first learning episodes. This behavior is influenced by uninformative guidance, although the
advice is correct concerning the space of actions that provide less information. Receiving much
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advice of this nature may not help in learning, even more, when the state is disturbed externally.

5.1. Future Works

As future work, we propose:

To consider previous environmental information to accelerate learning further. To use a
methodology based on traces of eligibility or experience replay.

To implement deep networks in our methodology, in particular, to use as function ap-
proximation a Convolutional Neural Network architecture based on the concepts of Deep

Reinforcement Learning.

To apply the proposed approach in a robotic environment, where the action space is
multidimensional.
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5.2. Published Contributions

Title: Human feedback in continuous actor-critic reinforcement learning.

Autors: Cristian Millán, Bruno Fernandes, Francisco Cruz

Abstract: Reinforcement learning is utilized in contexts where an agent tries to learn
from the environment. Using continuous actions, the performance may be improved in compari-
son to using discrete actions, however, this leads to excessive time to find a proper policy. In this
work, we focus on including human feedback in reinforcement learning for a continuous action
space. We unify the policy and the feedback to favor actions of low probability density. Further-
more, we compare the performance of the feedback for the continuous actor-critic algorithm and
test our experiments in the cart-pole balancing task. The obtained results show that the proposed
approach increases the accumulated reward in comparison to the autonomous learning method.
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ANNEX A

Modification of the Cart-Pole Balancing
Environment from OpenAI Gym.

The cart-pole environment, implemented in OpenAI Gym toolkit [59], is a problem of
classic control of continuous states and discrete actions. In this tool, the cart-pole balancing is
implemented as an episode task, and then terminal states are defined. The task ends if the pole
falls (|φ| ≥ 2.4) or if the cart collides with the ends of the track (|χ| ≥ π

15
) The environment

has two versions, "CartPole-v0" that performs a maximum 150 iterations per execution, and
"CartPole-v1" that performs a maximum of 500 iterations per execution. We use the "CartPole-
v1" version in our implementations. The action of the problem represents the force F applied
to the system that is taken from a discrete space (0,1). The force applied to the cart is obtained
under the condition:

F =

{
Fmax if action is 1
−Fmax if action is 0

.

The reward function implemented grants a unit of reward in each iteration. The reward
is zero if the task ends, e.g., the current state is terminal. The step(action) function of the
source code receives an action as input, it is verified if it belongs to the discrete action space and
returns the next state, the reward, a done (True if the state is terminal) and information.

To carry out our implementation, we modified the source code to allow continuous
actions. We eliminate the condition that verifies if the actions are discrete,

assert self.action_space.contains(action), "%r (%s) invalid"%(action, type(action))

and limit the actions to the interval (−Fmax, Fmax). The reward function was replaced by the
expression in (4.1). The number of iterations of the "CartPole-v1" version was modified from
500 to 400.
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Finally, we add the friction of the car on the track in the equations of motion, according
to Barto et al. [6]. This modification allows changing the value of the friction coefficient to alter
the movement of the car and the pendulum.
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